| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-ack | 
							⊢ Ack  =  seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq1i | 
							⊢ ( Ack ‘ ( 𝑀  +  1 ) )  =  ( seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) ‘ ( 𝑀  +  1 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							nn0uz | 
							⊢ ℕ0  =  ( ℤ≥ ‘ 0 )  | 
						
						
							| 4 | 
							
								
							 | 
							id | 
							⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℕ0 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑀  +  1 )  =  ( 𝑀  +  1 )  | 
						
						
							| 6 | 
							
								1
							 | 
							eqcomi | 
							⊢ seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) )  =  Ack  | 
						
						
							| 7 | 
							
								6
							 | 
							fveq1i | 
							⊢ ( seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) ‘ 𝑀 )  =  ( Ack ‘ 𝑀 )  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							⊢ ( 𝑀  ∈  ℕ0  →  ( seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) ‘ 𝑀 )  =  ( Ack ‘ 𝑀 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) )  =  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							nn0p1gt0 | 
							⊢ ( 𝑀  ∈  ℕ0  →  0  <  ( 𝑀  +  1 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							gt0ne0d | 
							⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ≠  0 )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑖  =  ( 𝑀  +  1 ) )  →  ( 𝑀  +  1 )  ≠  0 )  | 
						
						
							| 13 | 
							
								
							 | 
							neeq1 | 
							⊢ ( 𝑖  =  ( 𝑀  +  1 )  →  ( 𝑖  ≠  0  ↔  ( 𝑀  +  1 )  ≠  0 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑖  =  ( 𝑀  +  1 ) )  →  ( 𝑖  ≠  0  ↔  ( 𝑀  +  1 )  ≠  0 ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							mpbird | 
							⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑖  =  ( 𝑀  +  1 ) )  →  𝑖  ≠  0 )  | 
						
						
							| 16 | 
							
								15
							 | 
							neneqd | 
							⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑖  =  ( 𝑀  +  1 ) )  →  ¬  𝑖  =  0 )  | 
						
						
							| 17 | 
							
								16
							 | 
							iffalsed | 
							⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑖  =  ( 𝑀  +  1 ) )  →  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 )  =  𝑖 )  | 
						
						
							| 18 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑖  =  ( 𝑀  +  1 ) )  →  𝑖  =  ( 𝑀  +  1 ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							eqtrd | 
							⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑖  =  ( 𝑀  +  1 ) )  →  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 )  =  ( 𝑀  +  1 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							peano2nn0 | 
							⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  ℕ0 )  | 
						
						
							| 21 | 
							
								9 19 20 20
							 | 
							fvmptd | 
							⊢ ( 𝑀  ∈  ℕ0  →  ( ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ‘ ( 𝑀  +  1 ) )  =  ( 𝑀  +  1 ) )  | 
						
						
							| 22 | 
							
								3 4 5 8 21
							 | 
							seqp1d | 
							⊢ ( 𝑀  ∈  ℕ0  →  ( seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) ‘ ( 𝑀  +  1 ) )  =  ( ( Ack ‘ 𝑀 ) ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ( 𝑀  +  1 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) )  =  ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑓  =  ( Ack ‘ 𝑀 )  →  ( IterComp ‘ 𝑓 )  =  ( IterComp ‘ ( Ack ‘ 𝑀 ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							fveq1d | 
							⊢ ( 𝑓  =  ( Ack ‘ 𝑀 )  →  ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) )  =  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							fveq1d | 
							⊢ ( 𝑓  =  ( Ack ‘ 𝑀 )  →  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 )  =  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							mpteq2dv | 
							⊢ ( 𝑓  =  ( Ack ‘ 𝑀 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							ad2antrl | 
							⊢ ( ( 𝑀  ∈  ℕ0  ∧  ( 𝑓  =  ( Ack ‘ 𝑀 )  ∧  𝑗  =  ( 𝑀  +  1 ) ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							fvexd | 
							⊢ ( 𝑀  ∈  ℕ0  →  ( Ack ‘ 𝑀 )  ∈  V )  | 
						
						
							| 30 | 
							
								
							 | 
							ovexd | 
							⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  V )  | 
						
						
							| 31 | 
							
								
							 | 
							nn0ex | 
							⊢ ℕ0  ∈  V  | 
						
						
							| 32 | 
							
								31
							 | 
							mptex | 
							⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) )  ∈  V  | 
						
						
							| 33 | 
							
								32
							 | 
							a1i | 
							⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) )  ∈  V )  | 
						
						
							| 34 | 
							
								23 28 29 30 33
							 | 
							ovmpod | 
							⊢ ( 𝑀  ∈  ℕ0  →  ( ( Ack ‘ 𝑀 ) ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ( 𝑀  +  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) )  | 
						
						
							| 35 | 
							
								22 34
							 | 
							eqtrd | 
							⊢ ( 𝑀  ∈  ℕ0  →  ( seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) ‘ ( 𝑀  +  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) )  | 
						
						
							| 36 | 
							
								2 35
							 | 
							eqtrid | 
							⊢ ( 𝑀  ∈  ℕ0  →  ( Ack ‘ ( 𝑀  +  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) )  |