Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
|
omex |
⊢ ω ∈ V |
3 |
|
isacn |
⊢ ( ( 𝑥 ∈ V ∧ ω ∈ V ) → ( 𝑥 ∈ AC ω ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) ∃ 𝑔 ∀ 𝑦 ∈ ω ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝑥 ∈ AC ω ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) ∃ 𝑔 ∀ 𝑦 ∈ ω ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) |
5 |
|
axcc2 |
⊢ ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑦 ∈ ω ( ( 𝑓 ‘ 𝑦 ) ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
6 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) → 𝑓 : ω ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ) |
7 |
|
ffvelrn |
⊢ ( ( 𝑓 : ω ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ∧ 𝑦 ∈ ω ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝒫 𝑥 ∖ { ∅ } ) ) |
8 |
|
eldifsni |
⊢ ( ( 𝑓 ‘ 𝑦 ) ∈ ( 𝒫 𝑥 ∖ { ∅ } ) → ( 𝑓 ‘ 𝑦 ) ≠ ∅ ) |
9 |
7 8
|
syl |
⊢ ( ( 𝑓 : ω ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ∧ 𝑦 ∈ ω ) → ( 𝑓 ‘ 𝑦 ) ≠ ∅ ) |
10 |
6 9
|
sylan |
⊢ ( ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) ∧ 𝑦 ∈ ω ) → ( 𝑓 ‘ 𝑦 ) ≠ ∅ ) |
11 |
|
id |
⊢ ( ( ( 𝑓 ‘ 𝑦 ) ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) → ( ( 𝑓 ‘ 𝑦 ) ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
12 |
10 11
|
syl5com |
⊢ ( ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) ∧ 𝑦 ∈ ω ) → ( ( ( 𝑓 ‘ 𝑦 ) ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) → ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
13 |
12
|
ralimdva |
⊢ ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) → ( ∀ 𝑦 ∈ ω ( ( 𝑓 ‘ 𝑦 ) ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ ω ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
14 |
13
|
adantld |
⊢ ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) → ( ( 𝑔 Fn ω ∧ ∀ 𝑦 ∈ ω ( ( 𝑓 ‘ 𝑦 ) ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ ω ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
15 |
14
|
eximdv |
⊢ ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) → ( ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑦 ∈ ω ( ( 𝑓 ‘ 𝑦 ) ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) → ∃ 𝑔 ∀ 𝑦 ∈ ω ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
16 |
5 15
|
mpi |
⊢ ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) → ∃ 𝑔 ∀ 𝑦 ∈ ω ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) |
17 |
4 16
|
mprgbir |
⊢ 𝑥 ∈ AC ω |
18 |
17 1
|
2th |
⊢ ( 𝑥 ∈ AC ω ↔ 𝑥 ∈ V ) |
19 |
18
|
eqriv |
⊢ AC ω = V |