Metamath Proof Explorer


Theorem acncc

Description: An ax-cc equivalent: every set has choice sets of length _om . (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion acncc AC ω = V

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 omex ω ∈ V
3 isacn ( ( 𝑥 ∈ V ∧ ω ∈ V ) → ( 𝑥AC ω ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) ∃ 𝑔𝑦 ∈ ω ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ) )
4 1 2 3 mp2an ( 𝑥AC ω ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) ∃ 𝑔𝑦 ∈ ω ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) )
5 axcc2 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑦 ∈ ω ( ( 𝑓𝑦 ) ≠ ∅ → ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ) )
6 elmapi ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) → 𝑓 : ω ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) )
7 ffvelrn ( ( 𝑓 : ω ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ∧ 𝑦 ∈ ω ) → ( 𝑓𝑦 ) ∈ ( 𝒫 𝑥 ∖ { ∅ } ) )
8 eldifsni ( ( 𝑓𝑦 ) ∈ ( 𝒫 𝑥 ∖ { ∅ } ) → ( 𝑓𝑦 ) ≠ ∅ )
9 7 8 syl ( ( 𝑓 : ω ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ∧ 𝑦 ∈ ω ) → ( 𝑓𝑦 ) ≠ ∅ )
10 6 9 sylan ( ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) ∧ 𝑦 ∈ ω ) → ( 𝑓𝑦 ) ≠ ∅ )
11 id ( ( ( 𝑓𝑦 ) ≠ ∅ → ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ) → ( ( 𝑓𝑦 ) ≠ ∅ → ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ) )
12 10 11 syl5com ( ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) ∧ 𝑦 ∈ ω ) → ( ( ( 𝑓𝑦 ) ≠ ∅ → ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ) → ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ) )
13 12 ralimdva ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) → ( ∀ 𝑦 ∈ ω ( ( 𝑓𝑦 ) ≠ ∅ → ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ) → ∀ 𝑦 ∈ ω ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ) )
14 13 adantld ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) → ( ( 𝑔 Fn ω ∧ ∀ 𝑦 ∈ ω ( ( 𝑓𝑦 ) ≠ ∅ → ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ) ) → ∀ 𝑦 ∈ ω ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ) )
15 14 eximdv ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) → ( ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑦 ∈ ω ( ( 𝑓𝑦 ) ≠ ∅ → ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ) ) → ∃ 𝑔𝑦 ∈ ω ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) ) )
16 5 15 mpi ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) → ∃ 𝑔𝑦 ∈ ω ( 𝑔𝑦 ) ∈ ( 𝑓𝑦 ) )
17 4 16 mprgbir 𝑥AC ω
18 17 1 2th ( 𝑥AC ω ↔ 𝑥 ∈ V )
19 18 eqriv AC ω = V