| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 2 |  | omex | ⊢ ω  ∈  V | 
						
							| 3 |  | isacn | ⊢ ( ( 𝑥  ∈  V  ∧  ω  ∈  V )  →  ( 𝑥  ∈  AC  ω  ↔  ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  ω ) ∃ 𝑔 ∀ 𝑦  ∈  ω ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( 𝑥  ∈  AC  ω  ↔  ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  ω ) ∃ 𝑔 ∀ 𝑦  ∈  ω ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 5 |  | axcc2 | ⊢ ∃ 𝑔 ( 𝑔  Fn  ω  ∧  ∀ 𝑦  ∈  ω ( ( 𝑓 ‘ 𝑦 )  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 6 |  | elmapi | ⊢ ( 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  ω )  →  𝑓 : ω ⟶ ( 𝒫  𝑥  ∖  { ∅ } ) ) | 
						
							| 7 |  | ffvelcdm | ⊢ ( ( 𝑓 : ω ⟶ ( 𝒫  𝑥  ∖  { ∅ } )  ∧  𝑦  ∈  ω )  →  ( 𝑓 ‘ 𝑦 )  ∈  ( 𝒫  𝑥  ∖  { ∅ } ) ) | 
						
							| 8 |  | eldifsni | ⊢ ( ( 𝑓 ‘ 𝑦 )  ∈  ( 𝒫  𝑥  ∖  { ∅ } )  →  ( 𝑓 ‘ 𝑦 )  ≠  ∅ ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝑓 : ω ⟶ ( 𝒫  𝑥  ∖  { ∅ } )  ∧  𝑦  ∈  ω )  →  ( 𝑓 ‘ 𝑦 )  ≠  ∅ ) | 
						
							| 10 | 6 9 | sylan | ⊢ ( ( 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  ω )  ∧  𝑦  ∈  ω )  →  ( 𝑓 ‘ 𝑦 )  ≠  ∅ ) | 
						
							| 11 |  | id | ⊢ ( ( ( 𝑓 ‘ 𝑦 )  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) )  →  ( ( 𝑓 ‘ 𝑦 )  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 12 | 10 11 | syl5com | ⊢ ( ( 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  ω )  ∧  𝑦  ∈  ω )  →  ( ( ( 𝑓 ‘ 𝑦 )  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) )  →  ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 13 | 12 | ralimdva | ⊢ ( 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  ω )  →  ( ∀ 𝑦  ∈  ω ( ( 𝑓 ‘ 𝑦 )  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) )  →  ∀ 𝑦  ∈  ω ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 14 | 13 | adantld | ⊢ ( 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  ω )  →  ( ( 𝑔  Fn  ω  ∧  ∀ 𝑦  ∈  ω ( ( 𝑓 ‘ 𝑦 )  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) )  →  ∀ 𝑦  ∈  ω ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 15 | 14 | eximdv | ⊢ ( 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  ω )  →  ( ∃ 𝑔 ( 𝑔  Fn  ω  ∧  ∀ 𝑦  ∈  ω ( ( 𝑓 ‘ 𝑦 )  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) )  →  ∃ 𝑔 ∀ 𝑦  ∈  ω ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 16 | 5 15 | mpi | ⊢ ( 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  ω )  →  ∃ 𝑔 ∀ 𝑦  ∈  ω ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 17 | 4 16 | mprgbir | ⊢ 𝑥  ∈  AC  ω | 
						
							| 18 | 17 1 | 2th | ⊢ ( 𝑥  ∈  AC  ω  ↔  𝑥  ∈  V ) | 
						
							| 19 | 18 | eqriv | ⊢ AC  ω  =  V |