Step |
Hyp |
Ref |
Expression |
1 |
|
brdomi |
⊢ ( 𝐴 ≼ 𝐵 → ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) |
2 |
|
neq0 |
⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
3 |
|
simpl3 |
⊢ ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑋 ∈ AC 𝐵 ) |
4 |
|
elmapi |
⊢ ( 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) → 𝑔 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
5 |
4
|
ad2antlr |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑔 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
6 |
|
simpll1 |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
7 |
|
f1f1orn |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 ) |
8 |
|
f1ocnv |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 → ◡ 𝑓 : ran 𝑓 –1-1-onto→ 𝐴 ) |
9 |
|
f1of |
⊢ ( ◡ 𝑓 : ran 𝑓 –1-1-onto→ 𝐴 → ◡ 𝑓 : ran 𝑓 ⟶ 𝐴 ) |
10 |
6 7 8 9
|
4syl |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → ◡ 𝑓 : ran 𝑓 ⟶ 𝐴 ) |
11 |
10
|
ffvelrnda |
⊢ ( ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ran 𝑓 ) → ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝐴 ) |
12 |
|
simpl2 |
⊢ ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ¬ 𝑦 ∈ ran 𝑓 ) → 𝑥 ∈ 𝐴 ) |
14 |
11 13
|
ifclda |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ∈ 𝐴 ) |
15 |
5 14
|
ffvelrnd |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
16 |
|
eldifsn |
⊢ ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ↔ ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ∈ 𝒫 𝑋 ∧ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ≠ ∅ ) ) |
17 |
|
elpwi |
⊢ ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ∈ 𝒫 𝑋 → ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ⊆ 𝑋 ) |
18 |
17
|
anim1i |
⊢ ( ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ∈ 𝒫 𝑋 ∧ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ≠ ∅ ) → ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ⊆ 𝑋 ∧ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ≠ ∅ ) ) |
19 |
16 18
|
sylbi |
⊢ ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ∈ ( 𝒫 𝑋 ∖ { ∅ } ) → ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ⊆ 𝑋 ∧ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ≠ ∅ ) ) |
20 |
15 19
|
syl |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ⊆ 𝑋 ∧ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ≠ ∅ ) ) |
21 |
20
|
ralrimiva |
⊢ ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∀ 𝑦 ∈ 𝐵 ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ⊆ 𝑋 ∧ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ≠ ∅ ) ) |
22 |
|
acni2 |
⊢ ( ( 𝑋 ∈ AC 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ⊆ 𝑋 ∧ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ≠ ∅ ) ) → ∃ 𝑘 ( 𝑘 : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ) ) |
23 |
3 21 22
|
syl2anc |
⊢ ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∃ 𝑘 ( 𝑘 : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ) ) |
24 |
|
f1dm |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → dom 𝑓 = 𝐴 ) |
25 |
|
vex |
⊢ 𝑓 ∈ V |
26 |
25
|
dmex |
⊢ dom 𝑓 ∈ V |
27 |
24 26
|
eqeltrrdi |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝐴 ∈ V ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) → 𝐴 ∈ V ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( 𝑘 : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ) ) → 𝐴 ∈ V ) |
30 |
|
simpll1 |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
31 |
|
f1f |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) |
32 |
|
frn |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ran 𝑓 ⊆ 𝐵 ) |
33 |
|
ssralv |
⊢ ( ran 𝑓 ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) → ∀ 𝑦 ∈ ran 𝑓 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ) ) |
34 |
30 31 32 33
|
4syl |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) → ∀ 𝑦 ∈ ran 𝑓 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ) ) |
35 |
|
iftrue |
⊢ ( 𝑦 ∈ ran 𝑓 → if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) = ( ◡ 𝑓 ‘ 𝑦 ) ) |
36 |
35
|
fveq2d |
⊢ ( 𝑦 ∈ ran 𝑓 → ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) = ( 𝑔 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) |
37 |
36
|
eleq2d |
⊢ ( 𝑦 ∈ ran 𝑓 → ( ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ↔ ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ) |
38 |
37
|
ralbiia |
⊢ ( ∀ 𝑦 ∈ ran 𝑓 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ↔ ∀ 𝑦 ∈ ran 𝑓 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) |
39 |
34 38
|
syl6ib |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) → ∀ 𝑦 ∈ ran 𝑓 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ) |
40 |
|
f1fn |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 Fn 𝐴 ) |
41 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → ( 𝑘 ‘ 𝑦 ) = ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ) |
42 |
|
2fveq3 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → ( 𝑔 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = ( 𝑔 ‘ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) |
43 |
41 42
|
eleq12d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → ( ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
44 |
43
|
ralrn |
⊢ ( 𝑓 Fn 𝐴 → ( ∀ 𝑦 ∈ ran 𝑓 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
45 |
30 40 44
|
3syl |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) → ( ∀ 𝑦 ∈ ran 𝑓 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
46 |
39 45
|
sylibd |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) → ∀ 𝑧 ∈ 𝐴 ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
47 |
30 7
|
syl |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) → 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 ) |
48 |
|
f1ocnvfv1 |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 ∧ 𝑧 ∈ 𝐴 ) → ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) = 𝑧 ) |
49 |
47 48
|
sylan |
⊢ ( ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) ∧ 𝑧 ∈ 𝐴 ) → ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) = 𝑧 ) |
50 |
49
|
fveq2d |
⊢ ( ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑔 ‘ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ( 𝑔 ‘ 𝑧 ) ) |
51 |
50
|
eleq2d |
⊢ ( ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ↔ ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ 𝑧 ) ) ) |
52 |
51
|
ralbidva |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ 𝑧 ) ) ) |
53 |
46 52
|
sylibd |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) → ∀ 𝑧 ∈ 𝐴 ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ 𝑧 ) ) ) |
54 |
53
|
impr |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( 𝑘 : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ) ) → ∀ 𝑧 ∈ 𝐴 ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ 𝑧 ) ) |
55 |
|
acnlem |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ 𝑧 ) ) → ∃ ℎ ∀ 𝑧 ∈ 𝐴 ( ℎ ‘ 𝑧 ) ∈ ( 𝑔 ‘ 𝑧 ) ) |
56 |
29 54 55
|
syl2anc |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( 𝑘 : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ) ) → ∃ ℎ ∀ 𝑧 ∈ 𝐴 ( ℎ ‘ 𝑧 ) ∈ ( 𝑔 ‘ 𝑧 ) ) |
57 |
23 56
|
exlimddv |
⊢ ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∃ ℎ ∀ 𝑧 ∈ 𝐴 ( ℎ ‘ 𝑧 ) ∈ ( 𝑔 ‘ 𝑧 ) ) |
58 |
57
|
ralrimiva |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) → ∀ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ ℎ ∀ 𝑧 ∈ 𝐴 ( ℎ ‘ 𝑧 ) ∈ ( 𝑔 ‘ 𝑧 ) ) |
59 |
|
elex |
⊢ ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ V ) |
60 |
|
isacn |
⊢ ( ( 𝑋 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑋 ∈ AC 𝐴 ↔ ∀ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ ℎ ∀ 𝑧 ∈ 𝐴 ( ℎ ‘ 𝑧 ) ∈ ( 𝑔 ‘ 𝑧 ) ) ) |
61 |
59 27 60
|
syl2anr |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ AC 𝐵 ) → ( 𝑋 ∈ AC 𝐴 ↔ ∀ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ ℎ ∀ 𝑧 ∈ 𝐴 ( ℎ ‘ 𝑧 ) ∈ ( 𝑔 ‘ 𝑧 ) ) ) |
62 |
61
|
3adant2 |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) → ( 𝑋 ∈ AC 𝐴 ↔ ∀ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ ℎ ∀ 𝑧 ∈ 𝐴 ( ℎ ‘ 𝑧 ) ∈ ( 𝑔 ‘ 𝑧 ) ) ) |
63 |
58 62
|
mpbird |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) → 𝑋 ∈ AC 𝐴 ) |
64 |
63
|
3exp |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴 ) ) ) |
65 |
64
|
exlimdv |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → ( ∃ 𝑥 𝑥 ∈ 𝐴 → ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴 ) ) ) |
66 |
2 65
|
syl5bi |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → ( ¬ 𝐴 = ∅ → ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴 ) ) ) |
67 |
|
acneq |
⊢ ( 𝐴 = ∅ → AC 𝐴 = AC ∅ ) |
68 |
|
0fin |
⊢ ∅ ∈ Fin |
69 |
|
finacn |
⊢ ( ∅ ∈ Fin → AC ∅ = V ) |
70 |
68 69
|
ax-mp |
⊢ AC ∅ = V |
71 |
67 70
|
eqtrdi |
⊢ ( 𝐴 = ∅ → AC 𝐴 = V ) |
72 |
71
|
eleq2d |
⊢ ( 𝐴 = ∅ → ( 𝑋 ∈ AC 𝐴 ↔ 𝑋 ∈ V ) ) |
73 |
59 72
|
syl5ibr |
⊢ ( 𝐴 = ∅ → ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴 ) ) |
74 |
66 73
|
pm2.61d2 |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴 ) ) |
75 |
74
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 → ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴 ) ) |
76 |
1 75
|
syl |
⊢ ( 𝐴 ≼ 𝐵 → ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴 ) ) |