Description: The class of choice sets of length A is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acnen | ⊢ ( 𝐴 ≈ 𝐵 → AC 𝐴 = AC 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensym | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) | |
| 2 | endom | ⊢ ( 𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴 ) | |
| 3 | acndom | ⊢ ( 𝐵 ≼ 𝐴 → ( 𝑥 ∈ AC 𝐴 → 𝑥 ∈ AC 𝐵 ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝑥 ∈ AC 𝐴 → 𝑥 ∈ AC 𝐵 ) ) |
| 5 | endom | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 6 | acndom | ⊢ ( 𝐴 ≼ 𝐵 → ( 𝑥 ∈ AC 𝐵 → 𝑥 ∈ AC 𝐴 ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝑥 ∈ AC 𝐵 → 𝑥 ∈ AC 𝐴 ) ) |
| 8 | 4 7 | impbid | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝑥 ∈ AC 𝐴 ↔ 𝑥 ∈ AC 𝐵 ) ) |
| 9 | 8 | eqrdv | ⊢ ( 𝐴 ≈ 𝐵 → AC 𝐴 = AC 𝐵 ) |