Description: The class of choice sets of length A is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | acnen | ⊢ ( 𝐴 ≈ 𝐵 → AC 𝐴 = AC 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensym | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) | |
2 | endom | ⊢ ( 𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴 ) | |
3 | acndom | ⊢ ( 𝐵 ≼ 𝐴 → ( 𝑥 ∈ AC 𝐴 → 𝑥 ∈ AC 𝐵 ) ) | |
4 | 1 2 3 | 3syl | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝑥 ∈ AC 𝐴 → 𝑥 ∈ AC 𝐵 ) ) |
5 | endom | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵 ) | |
6 | acndom | ⊢ ( 𝐴 ≼ 𝐵 → ( 𝑥 ∈ AC 𝐵 → 𝑥 ∈ AC 𝐴 ) ) | |
7 | 5 6 | syl | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝑥 ∈ AC 𝐵 → 𝑥 ∈ AC 𝐴 ) ) |
8 | 4 7 | impbid | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝑥 ∈ AC 𝐴 ↔ 𝑥 ∈ AC 𝐵 ) ) |
9 | 8 | eqrdv | ⊢ ( 𝐴 ≈ 𝐵 → AC 𝐴 = AC 𝐵 ) |