Metamath Proof Explorer


Theorem acnen2

Description: The class of sets with choice sequences of length A is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion acnen2 ( 𝑋𝑌 → ( 𝑋AC 𝐴𝑌AC 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ensym ( 𝑋𝑌𝑌𝑋 )
2 endom ( 𝑌𝑋𝑌𝑋 )
3 acndom2 ( 𝑌𝑋 → ( 𝑋AC 𝐴𝑌AC 𝐴 ) )
4 1 2 3 3syl ( 𝑋𝑌 → ( 𝑋AC 𝐴𝑌AC 𝐴 ) )
5 endom ( 𝑋𝑌𝑋𝑌 )
6 acndom2 ( 𝑋𝑌 → ( 𝑌AC 𝐴𝑋AC 𝐴 ) )
7 5 6 syl ( 𝑋𝑌 → ( 𝑌AC 𝐴𝑋AC 𝐴 ) )
8 4 7 impbid ( 𝑋𝑌 → ( 𝑋AC 𝐴𝑌AC 𝐴 ) )