| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 | ⊢ ( 𝐴  =  𝐶  →  ( 𝐴  ∈  V  ↔  𝐶  ∈  V ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝐴  =  𝐶  →  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 )  =  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐶 ) ) | 
						
							| 3 |  | raleq | ⊢ ( 𝐴  =  𝐶  →  ( ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  𝐶 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 4 | 3 | exbidv | ⊢ ( 𝐴  =  𝐶  →  ( ∃ 𝑔 ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 )  ↔  ∃ 𝑔 ∀ 𝑦  ∈  𝐶 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 5 | 2 4 | raleqbidv | ⊢ ( 𝐴  =  𝐶  →  ( ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 )  ↔  ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐶 ) ∃ 𝑔 ∀ 𝑦  ∈  𝐶 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 6 | 1 5 | anbi12d | ⊢ ( 𝐴  =  𝐶  →  ( ( 𝐴  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) )  ↔  ( 𝐶  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐶 ) ∃ 𝑔 ∀ 𝑦  ∈  𝐶 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 7 | 6 | abbidv | ⊢ ( 𝐴  =  𝐶  →  { 𝑥  ∣  ( 𝐴  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) }  =  { 𝑥  ∣  ( 𝐶  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐶 ) ∃ 𝑔 ∀ 𝑦  ∈  𝐶 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) } ) | 
						
							| 8 |  | df-acn | ⊢ AC  𝐴  =  { 𝑥  ∣  ( 𝐴  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) } | 
						
							| 9 |  | df-acn | ⊢ AC  𝐶  =  { 𝑥  ∣  ( 𝐶  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐶 ) ∃ 𝑔 ∀ 𝑦  ∈  𝐶 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) } | 
						
							| 10 | 7 8 9 | 3eqtr4g | ⊢ ( 𝐴  =  𝐶  →  AC  𝐴  =  AC  𝐶 ) |