| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 2 | 1 | eleq2d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 )  ↔  ( 𝑔 ‘ 𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 3 | 2 | ralbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 4 | 3 | exbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 )  ↔  ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 5 |  | acnrcl | ⊢ ( 𝑋  ∈  AC  𝐴  →  𝐴  ∈  V ) | 
						
							| 6 |  | isacn | ⊢ ( ( 𝑋  ∈  AC  𝐴  ∧  𝐴  ∈  V )  →  ( 𝑋  ∈  AC  𝐴  ↔  ∀ 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 7 | 5 6 | mpdan | ⊢ ( 𝑋  ∈  AC  𝐴  →  ( 𝑋  ∈  AC  𝐴  ↔  ∀ 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 8 | 7 | ibi | ⊢ ( 𝑋  ∈  AC  𝐴  →  ∀ 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑋  ∈  AC  𝐴  ∧  𝐹 : 𝐴 ⟶ ( 𝒫  𝑋  ∖  { ∅ } ) )  →  ∀ 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 10 |  | pwexg | ⊢ ( 𝑋  ∈  AC  𝐴  →  𝒫  𝑋  ∈  V ) | 
						
							| 11 | 10 | difexd | ⊢ ( 𝑋  ∈  AC  𝐴  →  ( 𝒫  𝑋  ∖  { ∅ } )  ∈  V ) | 
						
							| 12 | 11 5 | elmapd | ⊢ ( 𝑋  ∈  AC  𝐴  →  ( 𝐹  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 )  ↔  𝐹 : 𝐴 ⟶ ( 𝒫  𝑋  ∖  { ∅ } ) ) ) | 
						
							| 13 | 12 | biimpar | ⊢ ( ( 𝑋  ∈  AC  𝐴  ∧  𝐹 : 𝐴 ⟶ ( 𝒫  𝑋  ∖  { ∅ } ) )  →  𝐹  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ) | 
						
							| 14 | 4 9 13 | rspcdva | ⊢ ( ( 𝑋  ∈  AC  𝐴  ∧  𝐹 : 𝐴 ⟶ ( 𝒫  𝑋  ∖  { ∅ } ) )  →  ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝐹 ‘ 𝑥 ) ) |