Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ↔ ( 𝐵 ∈ 𝒫 𝑋 ∧ 𝐵 ≠ ∅ ) ) |
2 |
|
elpw2g |
⊢ ( 𝑋 ∈ AC 𝐴 → ( 𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋 ) ) |
3 |
2
|
anbi1d |
⊢ ( 𝑋 ∈ AC 𝐴 → ( ( 𝐵 ∈ 𝒫 𝑋 ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ) |
4 |
1 3
|
syl5bb |
⊢ ( 𝑋 ∈ AC 𝐴 → ( 𝐵 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ↔ ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ) |
5 |
4
|
ralbidv |
⊢ ( 𝑋 ∈ AC 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ) |
6 |
5
|
biimpar |
⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
8 |
7
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
9 |
6 8
|
sylib |
⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
10 |
|
acni |
⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) → ∃ 𝑓 ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) |
11 |
9 10
|
syldan |
⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑓 ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) |
12 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
13 |
12
|
nfel2 |
⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
14 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) |
15 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑥 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
17 |
15 16
|
eleq12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
18 |
13 14 17
|
cbvralw |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
19 |
|
simplr |
⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) |
20 |
|
simplr |
⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ⊆ 𝑋 ) → 𝑥 ∈ 𝐴 ) |
21 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ⊆ 𝑋 ) → 𝑋 ∈ AC 𝐴 ) |
22 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ⊆ 𝑋 ) → 𝐵 ⊆ 𝑋 ) |
23 |
21 22
|
ssexd |
⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ⊆ 𝑋 ) → 𝐵 ∈ V ) |
24 |
7
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
25 |
20 23 24
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ⊆ 𝑋 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
26 |
25
|
eleq2d |
⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ⊆ 𝑋 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
27 |
26
|
ex |
⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ⊆ 𝑋 → ( ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
28 |
27
|
adantrd |
⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
29 |
28
|
ralimdva |
⊢ ( 𝑋 ∈ AC 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
30 |
29
|
imp |
⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
31 |
|
ralbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
32 |
30 31
|
syl |
⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
33 |
32
|
biimpa |
⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |
34 |
|
ssel |
⊢ ( 𝐵 ⊆ 𝑋 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ( 𝑓 ‘ 𝑥 ) ∈ 𝑋 ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ( 𝑓 ‘ 𝑥 ) ∈ 𝑋 ) ) |
36 |
35
|
ral2imi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑋 ) ) |
37 |
19 33 36
|
sylc |
⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑋 ) |
38 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) |
39 |
38
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑋 ↔ ( 𝑓 ‘ 𝑦 ) ∈ 𝑋 ) ) |
40 |
39
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ∈ 𝑋 ) |
41 |
37 40
|
sylan |
⊢ ( ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ∈ 𝑋 ) |
42 |
41
|
fmpttd |
⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : 𝐴 ⟶ 𝑋 ) |
43 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → 𝑋 ∈ AC 𝐴 ) |
44 |
|
acnrcl |
⊢ ( 𝑋 ∈ AC 𝐴 → 𝐴 ∈ V ) |
45 |
43 44
|
syl |
⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → 𝐴 ∈ V ) |
46 |
|
fex2 |
⊢ ( ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : 𝐴 ⟶ 𝑋 ∧ 𝐴 ∈ V ∧ 𝑋 ∈ AC 𝐴 ) → ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ∈ V ) |
47 |
42 45 43 46
|
syl3anc |
⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ∈ V ) |
48 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) |
49 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑥 ) ∈ V |
50 |
15 48 49
|
fvmpt |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
51 |
50
|
eleq1d |
⊢ ( 𝑥 ∈ 𝐴 → ( ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
52 |
51
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |
53 |
33 52
|
sylibr |
⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝐵 ) |
54 |
42 53
|
jca |
⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
55 |
|
feq1 |
⊢ ( 𝑔 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) → ( 𝑔 : 𝐴 ⟶ 𝑋 ↔ ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : 𝐴 ⟶ 𝑋 ) ) |
56 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) → ( 𝑔 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) ) |
57 |
56
|
eleq1d |
⊢ ( 𝑔 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ↔ ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
58 |
57
|
ralbidv |
⊢ ( 𝑔 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
59 |
55 58
|
anbi12d |
⊢ ( 𝑔 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) → ( ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ↔ ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
60 |
47 54 59
|
spcedv |
⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) |
61 |
60
|
ex |
⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
62 |
18 61
|
syl5bi |
⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
63 |
62
|
exlimdv |
⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ( ∃ 𝑓 ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
64 |
11 63
|
mpd |
⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) |