Step |
Hyp |
Ref |
Expression |
1 |
|
acni3.1 |
⊢ ( 𝑦 = ( 𝑔 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
rabn0 |
⊢ ( { 𝑦 ∈ 𝑋 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑦 ∈ 𝑋 𝜑 ) |
3 |
2
|
biimpri |
⊢ ( ∃ 𝑦 ∈ 𝑋 𝜑 → { 𝑦 ∈ 𝑋 ∣ 𝜑 } ≠ ∅ ) |
4 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ⊆ 𝑋 |
5 |
3 4
|
jctil |
⊢ ( ∃ 𝑦 ∈ 𝑋 𝜑 → ( { 𝑦 ∈ 𝑋 ∣ 𝜑 } ⊆ 𝑋 ∧ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ≠ ∅ ) ) |
6 |
5
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑋 𝜑 → ∀ 𝑥 ∈ 𝐴 ( { 𝑦 ∈ 𝑋 ∣ 𝜑 } ⊆ 𝑋 ∧ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ≠ ∅ ) ) |
7 |
|
acni2 |
⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( { 𝑦 ∈ 𝑋 ∣ 𝜑 } ⊆ 𝑋 ∧ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ≠ ∅ ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ) ) |
8 |
6 7
|
sylan2 |
⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑋 𝜑 ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ) ) |
9 |
1
|
elrab |
⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ↔ ( ( 𝑔 ‘ 𝑥 ) ∈ 𝑋 ∧ 𝜓 ) ) |
10 |
9
|
simprbi |
⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ { 𝑦 ∈ 𝑋 ∣ 𝜑 } → 𝜓 ) |
11 |
10
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ { 𝑦 ∈ 𝑋 ∣ 𝜑 } → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
12 |
11
|
anim2i |
⊢ ( ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ) → ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
13 |
12
|
eximi |
⊢ ( ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
14 |
8 13
|
syl |
⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑋 𝜑 ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |