| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvssunirn | ⊢ ( 𝑓 ‘ 𝑥 )  ⊆  ∪  ran  𝑓 | 
						
							| 2 |  | simpr | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  ( 𝑓 ‘ 𝑥 ) )  →  𝐵  ∈  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 3 | 1 2 | sselid | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  ( 𝑓 ‘ 𝑥 ) )  →  𝐵  ∈  ∪  ran  𝑓 ) | 
						
							| 4 | 3 | ralimiaa | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  ( 𝑓 ‘ 𝑥 )  →  ∀ 𝑥  ∈  𝐴 𝐵  ∈  ∪  ran  𝑓 ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 6 | 5 | fmpt | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  ∪  ran  𝑓  ↔  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ∪  ran  𝑓 ) | 
						
							| 7 | 4 6 | sylib | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  ( 𝑓 ‘ 𝑥 )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ∪  ran  𝑓 ) | 
						
							| 8 |  | id | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  𝑉 ) | 
						
							| 9 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 10 | 9 | rnex | ⊢ ran  𝑓  ∈  V | 
						
							| 11 | 10 | uniex | ⊢ ∪  ran  𝑓  ∈  V | 
						
							| 12 |  | fex2 | ⊢ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ∪  ran  𝑓  ∧  𝐴  ∈  𝑉  ∧  ∪  ran  𝑓  ∈  V )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  V ) | 
						
							| 13 | 11 12 | mp3an3 | ⊢ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ∪  ran  𝑓  ∧  𝐴  ∈  𝑉 )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  V ) | 
						
							| 14 | 7 8 13 | syl2anr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  ( 𝑓 ‘ 𝑥 ) )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  V ) | 
						
							| 15 | 5 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  ( 𝑓 ‘ 𝑥 ) )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 16 | 15 2 | eqeltrd | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  ( 𝑓 ‘ 𝑥 ) )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 17 | 16 | ralimiaa | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  ( 𝑓 ‘ 𝑥 )  →  ∀ 𝑥  ∈  𝐴 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  ( 𝑓 ‘ 𝑥 ) )  →  ∀ 𝑥  ∈  𝐴 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 19 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 20 | 19 | nfeq2 | ⊢ Ⅎ 𝑥 𝑔  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 21 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ( 𝑔 ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) | 
						
							| 22 | 21 | eleq1d | ⊢ ( 𝑔  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ( ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 )  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 23 | 20 22 | ralbid | ⊢ ( 𝑔  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ( ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  𝐴 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 24 | 14 18 23 | spcedv | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  ( 𝑓 ‘ 𝑥 ) )  →  ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) |