Metamath Proof Explorer


Theorem acnnum

Description: A set X which has choice sequences on it of length ~P X is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion acnnum ( 𝑋AC 𝒫 𝑋𝑋 ∈ dom card )

Proof

Step Hyp Ref Expression
1 pwexg ( 𝑋AC 𝒫 𝑋 → 𝒫 𝑋 ∈ V )
2 difss ( 𝒫 𝑋 ∖ { ∅ } ) ⊆ 𝒫 𝑋
3 ssdomg ( 𝒫 𝑋 ∈ V → ( ( 𝒫 𝑋 ∖ { ∅ } ) ⊆ 𝒫 𝑋 → ( 𝒫 𝑋 ∖ { ∅ } ) ≼ 𝒫 𝑋 ) )
4 1 2 3 mpisyl ( 𝑋AC 𝒫 𝑋 → ( 𝒫 𝑋 ∖ { ∅ } ) ≼ 𝒫 𝑋 )
5 acndom ( ( 𝒫 𝑋 ∖ { ∅ } ) ≼ 𝒫 𝑋 → ( 𝑋AC 𝒫 𝑋𝑋AC ( 𝒫 𝑋 ∖ { ∅ } ) ) )
6 4 5 mpcom ( 𝑋AC 𝒫 𝑋𝑋AC ( 𝒫 𝑋 ∖ { ∅ } ) )
7 eldifsn ( 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅ ) )
8 elpwi ( 𝑥 ∈ 𝒫 𝑋𝑥𝑋 )
9 8 anim1i ( ( 𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅ ) → ( 𝑥𝑋𝑥 ≠ ∅ ) )
10 7 9 sylbi ( 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) → ( 𝑥𝑋𝑥 ≠ ∅ ) )
11 10 rgen 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑥𝑋𝑥 ≠ ∅ )
12 acni2 ( ( 𝑋AC ( 𝒫 𝑋 ∖ { ∅ } ) ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑥𝑋𝑥 ≠ ∅ ) ) → ∃ 𝑓 ( 𝑓 : ( 𝒫 𝑋 ∖ { ∅ } ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓𝑥 ) ∈ 𝑥 ) )
13 6 11 12 sylancl ( 𝑋AC 𝒫 𝑋 → ∃ 𝑓 ( 𝑓 : ( 𝒫 𝑋 ∖ { ∅ } ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓𝑥 ) ∈ 𝑥 ) )
14 simpr ( ( 𝑓 : ( 𝒫 𝑋 ∖ { ∅ } ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓𝑥 ) ∈ 𝑥 ) → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓𝑥 ) ∈ 𝑥 )
15 7 imbi1i ( ( 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) → ( 𝑓𝑥 ) ∈ 𝑥 ) ↔ ( ( 𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅ ) → ( 𝑓𝑥 ) ∈ 𝑥 ) )
16 impexp ( ( ( 𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅ ) → ( 𝑓𝑥 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝒫 𝑋 → ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 ) ) )
17 15 16 bitri ( ( 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) → ( 𝑓𝑥 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝒫 𝑋 → ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 ) ) )
18 17 ralbii2 ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓𝑥 ) ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 ) )
19 14 18 sylib ( ( 𝑓 : ( 𝒫 𝑋 ∖ { ∅ } ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓𝑥 ) ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 ) )
20 19 eximi ( ∃ 𝑓 ( 𝑓 : ( 𝒫 𝑋 ∖ { ∅ } ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓𝑥 ) ∈ 𝑥 ) → ∃ 𝑓𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 ) )
21 13 20 syl ( 𝑋AC 𝒫 𝑋 → ∃ 𝑓𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 ) )
22 dfac8a ( 𝑋AC 𝒫 𝑋 → ( ∃ 𝑓𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 ) → 𝑋 ∈ dom card ) )
23 21 22 mpd ( 𝑋AC 𝒫 𝑋𝑋 ∈ dom card )
24 pwexg ( 𝑋 ∈ dom card → 𝒫 𝑋 ∈ V )
25 numacn ( 𝒫 𝑋 ∈ V → ( 𝑋 ∈ dom card → 𝑋AC 𝒫 𝑋 ) )
26 24 25 mpcom ( 𝑋 ∈ dom card → 𝑋AC 𝒫 𝑋 )
27 23 26 impbii ( 𝑋AC 𝒫 𝑋𝑋 ∈ dom card )