Step |
Hyp |
Ref |
Expression |
1 |
|
pwexg |
⊢ ( 𝑋 ∈ AC 𝒫 𝑋 → 𝒫 𝑋 ∈ V ) |
2 |
|
difss |
⊢ ( 𝒫 𝑋 ∖ { ∅ } ) ⊆ 𝒫 𝑋 |
3 |
|
ssdomg |
⊢ ( 𝒫 𝑋 ∈ V → ( ( 𝒫 𝑋 ∖ { ∅ } ) ⊆ 𝒫 𝑋 → ( 𝒫 𝑋 ∖ { ∅ } ) ≼ 𝒫 𝑋 ) ) |
4 |
1 2 3
|
mpisyl |
⊢ ( 𝑋 ∈ AC 𝒫 𝑋 → ( 𝒫 𝑋 ∖ { ∅ } ) ≼ 𝒫 𝑋 ) |
5 |
|
acndom |
⊢ ( ( 𝒫 𝑋 ∖ { ∅ } ) ≼ 𝒫 𝑋 → ( 𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ AC ( 𝒫 𝑋 ∖ { ∅ } ) ) ) |
6 |
4 5
|
mpcom |
⊢ ( 𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ AC ( 𝒫 𝑋 ∖ { ∅ } ) ) |
7 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅ ) ) |
8 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) |
9 |
8
|
anim1i |
⊢ ( ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅ ) → ( 𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅ ) ) |
10 |
7 9
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) → ( 𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅ ) ) |
11 |
10
|
rgen |
⊢ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅ ) |
12 |
|
acni2 |
⊢ ( ( 𝑋 ∈ AC ( 𝒫 𝑋 ∖ { ∅ } ) ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅ ) ) → ∃ 𝑓 ( 𝑓 : ( 𝒫 𝑋 ∖ { ∅ } ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
13 |
6 11 12
|
sylancl |
⊢ ( 𝑋 ∈ AC 𝒫 𝑋 → ∃ 𝑓 ( 𝑓 : ( 𝒫 𝑋 ∖ { ∅ } ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
14 |
|
simpr |
⊢ ( ( 𝑓 : ( 𝒫 𝑋 ∖ { ∅ } ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) |
15 |
7
|
imbi1i |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅ ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
16 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅ ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝒫 𝑋 → ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
17 |
15 16
|
bitri |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝒫 𝑋 → ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
18 |
17
|
ralbii2 |
⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
19 |
14 18
|
sylib |
⊢ ( ( 𝑓 : ( 𝒫 𝑋 ∖ { ∅ } ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
20 |
19
|
eximi |
⊢ ( ∃ 𝑓 ( 𝑓 : ( 𝒫 𝑋 ∖ { ∅ } ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → ∃ 𝑓 ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
21 |
13 20
|
syl |
⊢ ( 𝑋 ∈ AC 𝒫 𝑋 → ∃ 𝑓 ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
22 |
|
dfac8a |
⊢ ( 𝑋 ∈ AC 𝒫 𝑋 → ( ∃ 𝑓 ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → 𝑋 ∈ dom card ) ) |
23 |
21 22
|
mpd |
⊢ ( 𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ dom card ) |
24 |
|
pwexg |
⊢ ( 𝑋 ∈ dom card → 𝒫 𝑋 ∈ V ) |
25 |
|
numacn |
⊢ ( 𝒫 𝑋 ∈ V → ( 𝑋 ∈ dom card → 𝑋 ∈ AC 𝒫 𝑋 ) ) |
26 |
24 25
|
mpcom |
⊢ ( 𝑋 ∈ dom card → 𝑋 ∈ AC 𝒫 𝑋 ) |
27 |
23 26
|
impbii |
⊢ ( 𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card ) |