Description: Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | acongeq12d.1 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
acongeq12d.2 | ⊢ ( 𝜑 → 𝐷 = 𝐸 ) | ||
Assertion | acongeq12d | ⊢ ( 𝜑 → ( ( 𝐴 ∥ ( 𝐵 − 𝐷 ) ∨ 𝐴 ∥ ( 𝐵 − - 𝐷 ) ) ↔ ( 𝐴 ∥ ( 𝐶 − 𝐸 ) ∨ 𝐴 ∥ ( 𝐶 − - 𝐸 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acongeq12d.1 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
2 | acongeq12d.2 | ⊢ ( 𝜑 → 𝐷 = 𝐸 ) | |
3 | 1 2 | oveq12d | ⊢ ( 𝜑 → ( 𝐵 − 𝐷 ) = ( 𝐶 − 𝐸 ) ) |
4 | 3 | breq2d | ⊢ ( 𝜑 → ( 𝐴 ∥ ( 𝐵 − 𝐷 ) ↔ 𝐴 ∥ ( 𝐶 − 𝐸 ) ) ) |
5 | 2 | negeqd | ⊢ ( 𝜑 → - 𝐷 = - 𝐸 ) |
6 | 1 5 | oveq12d | ⊢ ( 𝜑 → ( 𝐵 − - 𝐷 ) = ( 𝐶 − - 𝐸 ) ) |
7 | 6 | breq2d | ⊢ ( 𝜑 → ( 𝐴 ∥ ( 𝐵 − - 𝐷 ) ↔ 𝐴 ∥ ( 𝐶 − - 𝐸 ) ) ) |
8 | 4 7 | orbi12d | ⊢ ( 𝜑 → ( ( 𝐴 ∥ ( 𝐵 − 𝐷 ) ∨ 𝐴 ∥ ( 𝐵 − - 𝐷 ) ) ↔ ( 𝐴 ∥ ( 𝐶 − 𝐸 ) ∨ 𝐴 ∥ ( 𝐶 − - 𝐸 ) ) ) ) |