Metamath Proof Explorer


Theorem acongeq12d

Description: Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014)

Ref Expression
Hypotheses acongeq12d.1 ( 𝜑𝐵 = 𝐶 )
acongeq12d.2 ( 𝜑𝐷 = 𝐸 )
Assertion acongeq12d ( 𝜑 → ( ( 𝐴 ∥ ( 𝐵𝐷 ) ∨ 𝐴 ∥ ( 𝐵 − - 𝐷 ) ) ↔ ( 𝐴 ∥ ( 𝐶𝐸 ) ∨ 𝐴 ∥ ( 𝐶 − - 𝐸 ) ) ) )

Proof

Step Hyp Ref Expression
1 acongeq12d.1 ( 𝜑𝐵 = 𝐶 )
2 acongeq12d.2 ( 𝜑𝐷 = 𝐸 )
3 1 2 oveq12d ( 𝜑 → ( 𝐵𝐷 ) = ( 𝐶𝐸 ) )
4 3 breq2d ( 𝜑 → ( 𝐴 ∥ ( 𝐵𝐷 ) ↔ 𝐴 ∥ ( 𝐶𝐸 ) ) )
5 2 negeqd ( 𝜑 → - 𝐷 = - 𝐸 )
6 1 5 oveq12d ( 𝜑 → ( 𝐵 − - 𝐷 ) = ( 𝐶 − - 𝐸 ) )
7 6 breq2d ( 𝜑 → ( 𝐴 ∥ ( 𝐵 − - 𝐷 ) ↔ 𝐴 ∥ ( 𝐶 − - 𝐸 ) ) )
8 4 7 orbi12d ( 𝜑 → ( ( 𝐴 ∥ ( 𝐵𝐷 ) ∨ 𝐴 ∥ ( 𝐵 − - 𝐷 ) ) ↔ ( 𝐴 ∥ ( 𝐶𝐸 ) ∨ 𝐴 ∥ ( 𝐶 − - 𝐸 ) ) ) )