Metamath Proof Explorer


Theorem acos1

Description: The arccosine of 1 is 0 . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion acos1 ( arccos ‘ 1 ) = 0

Proof

Step Hyp Ref Expression
1 ax-1cn 1 ∈ ℂ
2 acosval ( 1 ∈ ℂ → ( arccos ‘ 1 ) = ( ( π / 2 ) − ( arcsin ‘ 1 ) ) )
3 1 2 ax-mp ( arccos ‘ 1 ) = ( ( π / 2 ) − ( arcsin ‘ 1 ) )
4 asin1 ( arcsin ‘ 1 ) = ( π / 2 )
5 4 oveq2i ( ( π / 2 ) − ( arcsin ‘ 1 ) ) = ( ( π / 2 ) − ( π / 2 ) )
6 picn π ∈ ℂ
7 halfcl ( π ∈ ℂ → ( π / 2 ) ∈ ℂ )
8 6 7 ax-mp ( π / 2 ) ∈ ℂ
9 8 subidi ( ( π / 2 ) − ( π / 2 ) ) = 0
10 3 5 9 3eqtri ( arccos ‘ 1 ) = 0