| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							acosval | 
							⊢ ( 𝐴  ∈  ℂ  →  ( arccos ‘ 𝐴 )  =  ( ( π  /  2 )  −  ( arcsin ‘ 𝐴 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq2d | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( arccos ‘ 𝐴 ) )  =  ( ℜ ‘ ( ( π  /  2 )  −  ( arcsin ‘ 𝐴 ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							halfpire | 
							⊢ ( π  /  2 )  ∈  ℝ  | 
						
						
							| 4 | 
							
								3
							 | 
							recni | 
							⊢ ( π  /  2 )  ∈  ℂ  | 
						
						
							| 5 | 
							
								
							 | 
							asincl | 
							⊢ ( 𝐴  ∈  ℂ  →  ( arcsin ‘ 𝐴 )  ∈  ℂ )  | 
						
						
							| 6 | 
							
								
							 | 
							resub | 
							⊢ ( ( ( π  /  2 )  ∈  ℂ  ∧  ( arcsin ‘ 𝐴 )  ∈  ℂ )  →  ( ℜ ‘ ( ( π  /  2 )  −  ( arcsin ‘ 𝐴 ) ) )  =  ( ( ℜ ‘ ( π  /  2 ) )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							sylancr | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( ( π  /  2 )  −  ( arcsin ‘ 𝐴 ) ) )  =  ( ( ℜ ‘ ( π  /  2 ) )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							rere | 
							⊢ ( ( π  /  2 )  ∈  ℝ  →  ( ℜ ‘ ( π  /  2 ) )  =  ( π  /  2 ) )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							ax-mp | 
							⊢ ( ℜ ‘ ( π  /  2 ) )  =  ( π  /  2 )  | 
						
						
							| 10 | 
							
								9
							 | 
							oveq1i | 
							⊢ ( ( ℜ ‘ ( π  /  2 ) )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) )  =  ( ( π  /  2 )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							eqtrdi | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( ( π  /  2 )  −  ( arcsin ‘ 𝐴 ) ) )  =  ( ( π  /  2 )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							eqtrd | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( arccos ‘ 𝐴 ) )  =  ( ( π  /  2 )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) )  | 
						
						
							| 13 | 
							
								5
							 | 
							recld | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( arcsin ‘ 𝐴 ) )  ∈  ℝ )  | 
						
						
							| 14 | 
							
								
							 | 
							resubcl | 
							⊢ ( ( ( π  /  2 )  ∈  ℝ  ∧  ( ℜ ‘ ( arcsin ‘ 𝐴 ) )  ∈  ℝ )  →  ( ( π  /  2 )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) )  ∈  ℝ )  | 
						
						
							| 15 | 
							
								3 13 14
							 | 
							sylancr | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ( π  /  2 )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) )  ∈  ℝ )  | 
						
						
							| 16 | 
							
								
							 | 
							asinbnd | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( arcsin ‘ 𝐴 ) )  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							neghalfpire | 
							⊢ - ( π  /  2 )  ∈  ℝ  | 
						
						
							| 18 | 
							
								17 3
							 | 
							elicc2i | 
							⊢ ( ( ℜ ‘ ( arcsin ‘ 𝐴 ) )  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  ↔  ( ( ℜ ‘ ( arcsin ‘ 𝐴 ) )  ∈  ℝ  ∧  - ( π  /  2 )  ≤  ( ℜ ‘ ( arcsin ‘ 𝐴 ) )  ∧  ( ℜ ‘ ( arcsin ‘ 𝐴 ) )  ≤  ( π  /  2 ) ) )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							sylib | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ( ℜ ‘ ( arcsin ‘ 𝐴 ) )  ∈  ℝ  ∧  - ( π  /  2 )  ≤  ( ℜ ‘ ( arcsin ‘ 𝐴 ) )  ∧  ( ℜ ‘ ( arcsin ‘ 𝐴 ) )  ≤  ( π  /  2 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							simp3d | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( arcsin ‘ 𝐴 ) )  ≤  ( π  /  2 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							subge0 | 
							⊢ ( ( ( π  /  2 )  ∈  ℝ  ∧  ( ℜ ‘ ( arcsin ‘ 𝐴 ) )  ∈  ℝ )  →  ( 0  ≤  ( ( π  /  2 )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) )  ↔  ( ℜ ‘ ( arcsin ‘ 𝐴 ) )  ≤  ( π  /  2 ) ) )  | 
						
						
							| 22 | 
							
								3 13 21
							 | 
							sylancr | 
							⊢ ( 𝐴  ∈  ℂ  →  ( 0  ≤  ( ( π  /  2 )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) )  ↔  ( ℜ ‘ ( arcsin ‘ 𝐴 ) )  ≤  ( π  /  2 ) ) )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							mpbird | 
							⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( ( π  /  2 )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) )  | 
						
						
							| 24 | 
							
								3
							 | 
							a1i | 
							⊢ ( 𝐴  ∈  ℂ  →  ( π  /  2 )  ∈  ℝ )  | 
						
						
							| 25 | 
							
								
							 | 
							pire | 
							⊢ π  ∈  ℝ  | 
						
						
							| 26 | 
							
								25
							 | 
							a1i | 
							⊢ ( 𝐴  ∈  ℂ  →  π  ∈  ℝ )  | 
						
						
							| 27 | 
							
								25
							 | 
							recni | 
							⊢ π  ∈  ℂ  | 
						
						
							| 28 | 
							
								17
							 | 
							recni | 
							⊢ - ( π  /  2 )  ∈  ℂ  | 
						
						
							| 29 | 
							
								27 4
							 | 
							negsubi | 
							⊢ ( π  +  - ( π  /  2 ) )  =  ( π  −  ( π  /  2 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							pidiv2halves | 
							⊢ ( ( π  /  2 )  +  ( π  /  2 ) )  =  π  | 
						
						
							| 31 | 
							
								27 4 4 30
							 | 
							subaddrii | 
							⊢ ( π  −  ( π  /  2 ) )  =  ( π  /  2 )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							eqtri | 
							⊢ ( π  +  - ( π  /  2 ) )  =  ( π  /  2 )  | 
						
						
							| 33 | 
							
								4 27 28 32
							 | 
							subaddrii | 
							⊢ ( ( π  /  2 )  −  π )  =  - ( π  /  2 )  | 
						
						
							| 34 | 
							
								19
							 | 
							simp2d | 
							⊢ ( 𝐴  ∈  ℂ  →  - ( π  /  2 )  ≤  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							eqbrtrid | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ( π  /  2 )  −  π )  ≤  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) )  | 
						
						
							| 36 | 
							
								24 26 13 35
							 | 
							subled | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ( π  /  2 )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) )  ≤  π )  | 
						
						
							| 37 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 38 | 
							
								37 25
							 | 
							elicc2i | 
							⊢ ( ( ( π  /  2 )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) )  ∈  ( 0 [,] π )  ↔  ( ( ( π  /  2 )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) )  ∈  ℝ  ∧  0  ≤  ( ( π  /  2 )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) )  ∧  ( ( π  /  2 )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) )  ≤  π ) )  | 
						
						
							| 39 | 
							
								15 23 36 38
							 | 
							syl3anbrc | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ( π  /  2 )  −  ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) )  ∈  ( 0 [,] π ) )  | 
						
						
							| 40 | 
							
								12 39
							 | 
							eqeltrd | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( arccos ‘ 𝐴 ) )  ∈  ( 0 [,] π ) )  |