Metamath Proof Explorer


Theorem acosf

Description: Domain and range of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion acosf arccos : ℂ ⟶ ℂ

Proof

Step Hyp Ref Expression
1 df-acos arccos = ( 𝑥 ∈ ℂ ↦ ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) )
2 picn π ∈ ℂ
3 halfcl ( π ∈ ℂ → ( π / 2 ) ∈ ℂ )
4 2 3 ax-mp ( π / 2 ) ∈ ℂ
5 asincl ( 𝑥 ∈ ℂ → ( arcsin ‘ 𝑥 ) ∈ ℂ )
6 subcl ( ( ( π / 2 ) ∈ ℂ ∧ ( arcsin ‘ 𝑥 ) ∈ ℂ ) → ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) ∈ ℂ )
7 4 5 6 sylancr ( 𝑥 ∈ ℂ → ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) ∈ ℂ )
8 1 7 fmpti arccos : ℂ ⟶ ℂ