| Step | Hyp | Ref | Expression | 
						
							| 1 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 2 |  | halfcl | ⊢ ( π  ∈  ℂ  →  ( π  /  2 )  ∈  ℂ ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( π  /  2 )  ∈  ℂ | 
						
							| 4 |  | asincl | ⊢ ( 𝐴  ∈  ℂ  →  ( arcsin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 5 |  | subneg | ⊢ ( ( ( π  /  2 )  ∈  ℂ  ∧  ( arcsin ‘ 𝐴 )  ∈  ℂ )  →  ( ( π  /  2 )  −  - ( arcsin ‘ 𝐴 ) )  =  ( ( π  /  2 )  +  ( arcsin ‘ 𝐴 ) ) ) | 
						
							| 6 | 3 4 5 | sylancr | ⊢ ( 𝐴  ∈  ℂ  →  ( ( π  /  2 )  −  - ( arcsin ‘ 𝐴 ) )  =  ( ( π  /  2 )  +  ( arcsin ‘ 𝐴 ) ) ) | 
						
							| 7 |  | asinneg | ⊢ ( 𝐴  ∈  ℂ  →  ( arcsin ‘ - 𝐴 )  =  - ( arcsin ‘ 𝐴 ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( π  /  2 )  −  ( arcsin ‘ - 𝐴 ) )  =  ( ( π  /  2 )  −  - ( arcsin ‘ 𝐴 ) ) ) | 
						
							| 9 | 1 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  π  ∈  ℂ ) | 
						
							| 10 | 3 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ( π  /  2 )  ∈  ℂ ) | 
						
							| 11 | 9 10 4 | subsubd | ⊢ ( 𝐴  ∈  ℂ  →  ( π  −  ( ( π  /  2 )  −  ( arcsin ‘ 𝐴 ) ) )  =  ( ( π  −  ( π  /  2 ) )  +  ( arcsin ‘ 𝐴 ) ) ) | 
						
							| 12 |  | pidiv2halves | ⊢ ( ( π  /  2 )  +  ( π  /  2 ) )  =  π | 
						
							| 13 | 1 3 3 12 | subaddrii | ⊢ ( π  −  ( π  /  2 ) )  =  ( π  /  2 ) | 
						
							| 14 | 13 | oveq1i | ⊢ ( ( π  −  ( π  /  2 ) )  +  ( arcsin ‘ 𝐴 ) )  =  ( ( π  /  2 )  +  ( arcsin ‘ 𝐴 ) ) | 
						
							| 15 | 11 14 | eqtrdi | ⊢ ( 𝐴  ∈  ℂ  →  ( π  −  ( ( π  /  2 )  −  ( arcsin ‘ 𝐴 ) ) )  =  ( ( π  /  2 )  +  ( arcsin ‘ 𝐴 ) ) ) | 
						
							| 16 | 6 8 15 | 3eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( π  /  2 )  −  ( arcsin ‘ - 𝐴 ) )  =  ( π  −  ( ( π  /  2 )  −  ( arcsin ‘ 𝐴 ) ) ) ) | 
						
							| 17 |  | negcl | ⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ ) | 
						
							| 18 |  | acosval | ⊢ ( - 𝐴  ∈  ℂ  →  ( arccos ‘ - 𝐴 )  =  ( ( π  /  2 )  −  ( arcsin ‘ - 𝐴 ) ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( arccos ‘ - 𝐴 )  =  ( ( π  /  2 )  −  ( arcsin ‘ - 𝐴 ) ) ) | 
						
							| 20 |  | acosval | ⊢ ( 𝐴  ∈  ℂ  →  ( arccos ‘ 𝐴 )  =  ( ( π  /  2 )  −  ( arcsin ‘ 𝐴 ) ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( π  −  ( arccos ‘ 𝐴 ) )  =  ( π  −  ( ( π  /  2 )  −  ( arcsin ‘ 𝐴 ) ) ) ) | 
						
							| 22 | 16 19 21 | 3eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( arccos ‘ - 𝐴 )  =  ( π  −  ( arccos ‘ 𝐴 ) ) ) |