Step |
Hyp |
Ref |
Expression |
1 |
|
picn |
⊢ π ∈ ℂ |
2 |
|
halfcl |
⊢ ( π ∈ ℂ → ( π / 2 ) ∈ ℂ ) |
3 |
1 2
|
ax-mp |
⊢ ( π / 2 ) ∈ ℂ |
4 |
|
asincl |
⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) ∈ ℂ ) |
5 |
|
subneg |
⊢ ( ( ( π / 2 ) ∈ ℂ ∧ ( arcsin ‘ 𝐴 ) ∈ ℂ ) → ( ( π / 2 ) − - ( arcsin ‘ 𝐴 ) ) = ( ( π / 2 ) + ( arcsin ‘ 𝐴 ) ) ) |
6 |
3 4 5
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − - ( arcsin ‘ 𝐴 ) ) = ( ( π / 2 ) + ( arcsin ‘ 𝐴 ) ) ) |
7 |
|
asinneg |
⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ - 𝐴 ) = - ( arcsin ‘ 𝐴 ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( arcsin ‘ - 𝐴 ) ) = ( ( π / 2 ) − - ( arcsin ‘ 𝐴 ) ) ) |
9 |
1
|
a1i |
⊢ ( 𝐴 ∈ ℂ → π ∈ ℂ ) |
10 |
3
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( π / 2 ) ∈ ℂ ) |
11 |
9 10 4
|
subsubd |
⊢ ( 𝐴 ∈ ℂ → ( π − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( ( π − ( π / 2 ) ) + ( arcsin ‘ 𝐴 ) ) ) |
12 |
|
pidiv2halves |
⊢ ( ( π / 2 ) + ( π / 2 ) ) = π |
13 |
1 3 3 12
|
subaddrii |
⊢ ( π − ( π / 2 ) ) = ( π / 2 ) |
14 |
13
|
oveq1i |
⊢ ( ( π − ( π / 2 ) ) + ( arcsin ‘ 𝐴 ) ) = ( ( π / 2 ) + ( arcsin ‘ 𝐴 ) ) |
15 |
11 14
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( π − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( ( π / 2 ) + ( arcsin ‘ 𝐴 ) ) ) |
16 |
6 8 15
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( arcsin ‘ - 𝐴 ) ) = ( π − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) ) |
17 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
18 |
|
acosval |
⊢ ( - 𝐴 ∈ ℂ → ( arccos ‘ - 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ - 𝐴 ) ) ) |
19 |
17 18
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ - 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ - 𝐴 ) ) ) |
20 |
|
acosval |
⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( π − ( arccos ‘ 𝐴 ) ) = ( π − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) ) |
22 |
16 19 21
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ - 𝐴 ) = ( π − ( arccos ‘ 𝐴 ) ) ) |