Metamath Proof Explorer


Theorem acosrecl

Description: The arccosine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion acosrecl ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arccos ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 neg1rr - 1 ∈ ℝ
2 1re 1 ∈ ℝ
3 iccssre ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( - 1 [,] 1 ) ⊆ ℝ )
4 1 2 3 mp2an ( - 1 [,] 1 ) ⊆ ℝ
5 4 sseli ( 𝐴 ∈ ( - 1 [,] 1 ) → 𝐴 ∈ ℝ )
6 5 recnd ( 𝐴 ∈ ( - 1 [,] 1 ) → 𝐴 ∈ ℂ )
7 acosval ( 𝐴 ∈ ℂ → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) )
8 6 7 syl ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) )
9 halfpire ( π / 2 ) ∈ ℝ
10 asinrecl ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) ∈ ℝ )
11 resubcl ( ( ( π / 2 ) ∈ ℝ ∧ ( arcsin ‘ 𝐴 ) ∈ ℝ ) → ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ∈ ℝ )
12 9 10 11 sylancr ( 𝐴 ∈ ( - 1 [,] 1 ) → ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ∈ ℝ )
13 8 12 eqeltrd ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arccos ‘ 𝐴 ) ∈ ℝ )