Step |
Hyp |
Ref |
Expression |
1 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
2 |
|
1re |
⊢ 1 ∈ ℝ |
3 |
|
iccssre |
⊢ ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( - 1 [,] 1 ) ⊆ ℝ ) |
4 |
1 2 3
|
mp2an |
⊢ ( - 1 [,] 1 ) ⊆ ℝ |
5 |
4
|
sseli |
⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → 𝐴 ∈ ℝ ) |
6 |
5
|
recnd |
⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → 𝐴 ∈ ℂ ) |
7 |
|
acosval |
⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) |
9 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
10 |
|
asinrecl |
⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) ∈ ℝ ) |
11 |
|
resubcl |
⊢ ( ( ( π / 2 ) ∈ ℝ ∧ ( arcsin ‘ 𝐴 ) ∈ ℝ ) → ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ∈ ℝ ) |
12 |
9 10 11
|
sylancr |
⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ∈ ℝ ) |
13 |
8 12
|
eqeltrd |
⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arccos ‘ 𝐴 ) ∈ ℝ ) |