Metamath Proof Explorer


Theorem acosval

Description: Value of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion acosval ( 𝐴 ∈ ℂ → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑥 = 𝐴 → ( arcsin ‘ 𝑥 ) = ( arcsin ‘ 𝐴 ) )
2 1 oveq2d ( 𝑥 = 𝐴 → ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) )
3 df-acos arccos = ( 𝑥 ∈ ℂ ↦ ( ( π / 2 ) − ( arcsin ‘ 𝑥 ) ) )
4 ovex ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ∈ V
5 2 3 4 fvmpt ( 𝐴 ∈ ℂ → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) )