Metamath Proof Explorer


Theorem acsdomd

Description: In an algebraic closure system, if S and T have the same closure and S is infinite independent, then T dominates S . This follows from applying acsinfd and then applying unirnfdomd to the map given in acsmap2d . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses acsmap2d.1 ( 𝜑𝐴 ∈ ( ACS ‘ 𝑋 ) )
acsmap2d.2 𝑁 = ( mrCls ‘ 𝐴 )
acsmap2d.3 𝐼 = ( mrInd ‘ 𝐴 )
acsmap2d.4 ( 𝜑𝑆𝐼 )
acsmap2d.5 ( 𝜑𝑇𝑋 )
acsmap2d.6 ( 𝜑 → ( 𝑁𝑆 ) = ( 𝑁𝑇 ) )
acsinfd.7 ( 𝜑 → ¬ 𝑆 ∈ Fin )
Assertion acsdomd ( 𝜑𝑆𝑇 )

Proof

Step Hyp Ref Expression
1 acsmap2d.1 ( 𝜑𝐴 ∈ ( ACS ‘ 𝑋 ) )
2 acsmap2d.2 𝑁 = ( mrCls ‘ 𝐴 )
3 acsmap2d.3 𝐼 = ( mrInd ‘ 𝐴 )
4 acsmap2d.4 ( 𝜑𝑆𝐼 )
5 acsmap2d.5 ( 𝜑𝑇𝑋 )
6 acsmap2d.6 ( 𝜑 → ( 𝑁𝑆 ) = ( 𝑁𝑇 ) )
7 acsinfd.7 ( 𝜑 → ¬ 𝑆 ∈ Fin )
8 1 2 3 4 5 6 acsmap2d ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) )
9 simprr ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) → 𝑆 = ran 𝑓 )
10 simprl ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) → 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) )
11 inss2 ( 𝒫 𝑆 ∩ Fin ) ⊆ Fin
12 fss ( ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ( 𝒫 𝑆 ∩ Fin ) ⊆ Fin ) → 𝑓 : 𝑇 ⟶ Fin )
13 10 11 12 sylancl ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) → 𝑓 : 𝑇 ⟶ Fin )
14 1 2 3 4 5 6 7 acsinfd ( 𝜑 → ¬ 𝑇 ∈ Fin )
15 14 adantr ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) → ¬ 𝑇 ∈ Fin )
16 1 adantr ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) → 𝐴 ∈ ( ACS ‘ 𝑋 ) )
17 16 elfvexd ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) → 𝑋 ∈ V )
18 5 adantr ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) → 𝑇𝑋 )
19 17 18 ssexd ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) → 𝑇 ∈ V )
20 13 15 19 unirnfdomd ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) → ran 𝑓𝑇 )
21 9 20 eqbrtrd ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) → 𝑆𝑇 )
22 8 21 exlimddv ( 𝜑𝑆𝑇 )