| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							acsmap2d.1 | 
							⊢ ( 𝜑  →  𝐴  ∈  ( ACS ‘ 𝑋 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							acsmap2d.2 | 
							⊢ 𝑁  =  ( mrCls ‘ 𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							acsmap2d.3 | 
							⊢ 𝐼  =  ( mrInd ‘ 𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							acsmap2d.4 | 
							⊢ ( 𝜑  →  𝑆  ∈  𝐼 )  | 
						
						
							| 5 | 
							
								
							 | 
							acsmap2d.5 | 
							⊢ ( 𝜑  →  𝑇  ⊆  𝑋 )  | 
						
						
							| 6 | 
							
								
							 | 
							acsmap2d.6 | 
							⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑆 )  =  ( 𝑁 ‘ 𝑇 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							acsinfd.7 | 
							⊢ ( 𝜑  →  ¬  𝑆  ∈  Fin )  | 
						
						
							| 8 | 
							
								1 2 3 4 5 6
							 | 
							acsmap2d | 
							⊢ ( 𝜑  →  ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑆  =  ∪  ran  𝑓 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑆  =  ∪  ran  𝑓 ) )  →  𝑆  =  ∪  ran  𝑓 )  | 
						
						
							| 10 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑆  =  ∪  ran  𝑓 ) )  →  𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin ) )  | 
						
						
							| 11 | 
							
								
							 | 
							inss2 | 
							⊢ ( 𝒫  𝑆  ∩  Fin )  ⊆  Fin  | 
						
						
							| 12 | 
							
								
							 | 
							fss | 
							⊢ ( ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ( 𝒫  𝑆  ∩  Fin )  ⊆  Fin )  →  𝑓 : 𝑇 ⟶ Fin )  | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							sylancl | 
							⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑆  =  ∪  ran  𝑓 ) )  →  𝑓 : 𝑇 ⟶ Fin )  | 
						
						
							| 14 | 
							
								1 2 3 4 5 6 7
							 | 
							acsinfd | 
							⊢ ( 𝜑  →  ¬  𝑇  ∈  Fin )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑆  =  ∪  ran  𝑓 ) )  →  ¬  𝑇  ∈  Fin )  | 
						
						
							| 16 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑆  =  ∪  ran  𝑓 ) )  →  𝐴  ∈  ( ACS ‘ 𝑋 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							elfvexd | 
							⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑆  =  ∪  ran  𝑓 ) )  →  𝑋  ∈  V )  | 
						
						
							| 18 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑆  =  ∪  ran  𝑓 ) )  →  𝑇  ⊆  𝑋 )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							ssexd | 
							⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑆  =  ∪  ran  𝑓 ) )  →  𝑇  ∈  V )  | 
						
						
							| 20 | 
							
								13 15 19
							 | 
							unirnfdomd | 
							⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑆  =  ∪  ran  𝑓 ) )  →  ∪  ran  𝑓  ≼  𝑇 )  | 
						
						
							| 21 | 
							
								9 20
							 | 
							eqbrtrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑆  =  ∪  ran  𝑓 ) )  →  𝑆  ≼  𝑇 )  | 
						
						
							| 22 | 
							
								8 21
							 | 
							exlimddv | 
							⊢ ( 𝜑  →  𝑆  ≼  𝑇 )  |