Step |
Hyp |
Ref |
Expression |
1 |
|
acsdrscl.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
2 |
|
fveq2 |
⊢ ( 𝑡 = 𝑌 → ( toInc ‘ 𝑡 ) = ( toInc ‘ 𝑌 ) ) |
3 |
2
|
eleq1d |
⊢ ( 𝑡 = 𝑌 → ( ( toInc ‘ 𝑡 ) ∈ Dirset ↔ ( toInc ‘ 𝑌 ) ∈ Dirset ) ) |
4 |
|
unieq |
⊢ ( 𝑡 = 𝑌 → ∪ 𝑡 = ∪ 𝑌 ) |
5 |
4
|
fveq2d |
⊢ ( 𝑡 = 𝑌 → ( 𝐹 ‘ ∪ 𝑡 ) = ( 𝐹 ‘ ∪ 𝑌 ) ) |
6 |
|
imaeq2 |
⊢ ( 𝑡 = 𝑌 → ( 𝐹 “ 𝑡 ) = ( 𝐹 “ 𝑌 ) ) |
7 |
6
|
unieqd |
⊢ ( 𝑡 = 𝑌 → ∪ ( 𝐹 “ 𝑡 ) = ∪ ( 𝐹 “ 𝑌 ) ) |
8 |
5 7
|
eqeq12d |
⊢ ( 𝑡 = 𝑌 → ( ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ↔ ( 𝐹 ‘ ∪ 𝑌 ) = ∪ ( 𝐹 “ 𝑌 ) ) ) |
9 |
3 8
|
imbi12d |
⊢ ( 𝑡 = 𝑌 → ( ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ↔ ( ( toInc ‘ 𝑌 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑌 ) = ∪ ( 𝐹 “ 𝑌 ) ) ) ) |
10 |
|
isacs3lem |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ) |
11 |
1
|
isacs4lem |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ) |
12 |
10 11
|
syl |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ) |
13 |
12
|
simprd |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝒫 𝑋 ) → ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) |
15 |
|
elfvdm |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → 𝑋 ∈ dom ACS ) |
16 |
|
pwexg |
⊢ ( 𝑋 ∈ dom ACS → 𝒫 𝑋 ∈ V ) |
17 |
|
elpw2g |
⊢ ( 𝒫 𝑋 ∈ V → ( 𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋 ) ) |
18 |
15 16 17
|
3syl |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝑌 ∈ 𝒫 𝒫 𝑋 ↔ 𝑌 ⊆ 𝒫 𝑋 ) ) |
19 |
18
|
biimpar |
⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝒫 𝑋 ) → 𝑌 ∈ 𝒫 𝒫 𝑋 ) |
20 |
9 14 19
|
rspcdva |
⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝒫 𝑋 ) → ( ( toInc ‘ 𝑌 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑌 ) = ∪ ( 𝐹 “ 𝑌 ) ) ) |
21 |
20
|
3impia |
⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝒫 𝑋 ∧ ( toInc ‘ 𝑌 ) ∈ Dirset ) → ( 𝐹 ‘ ∪ 𝑌 ) = ∪ ( 𝐹 “ 𝑌 ) ) |