| Step | Hyp | Ref | Expression | 
						
							| 1 |  | acsdrscl.f | ⊢ 𝐹  =  ( mrCls ‘ 𝐶 ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑡  =  𝑌  →  ( toInc ‘ 𝑡 )  =  ( toInc ‘ 𝑌 ) ) | 
						
							| 3 | 2 | eleq1d | ⊢ ( 𝑡  =  𝑌  →  ( ( toInc ‘ 𝑡 )  ∈  Dirset  ↔  ( toInc ‘ 𝑌 )  ∈  Dirset ) ) | 
						
							| 4 |  | unieq | ⊢ ( 𝑡  =  𝑌  →  ∪  𝑡  =  ∪  𝑌 ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝑡  =  𝑌  →  ( 𝐹 ‘ ∪  𝑡 )  =  ( 𝐹 ‘ ∪  𝑌 ) ) | 
						
							| 6 |  | imaeq2 | ⊢ ( 𝑡  =  𝑌  →  ( 𝐹  “  𝑡 )  =  ( 𝐹  “  𝑌 ) ) | 
						
							| 7 | 6 | unieqd | ⊢ ( 𝑡  =  𝑌  →  ∪  ( 𝐹  “  𝑡 )  =  ∪  ( 𝐹  “  𝑌 ) ) | 
						
							| 8 | 5 7 | eqeq12d | ⊢ ( 𝑡  =  𝑌  →  ( ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 )  ↔  ( 𝐹 ‘ ∪  𝑌 )  =  ∪  ( 𝐹  “  𝑌 ) ) ) | 
						
							| 9 | 3 8 | imbi12d | ⊢ ( 𝑡  =  𝑌  →  ( ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 ) )  ↔  ( ( toInc ‘ 𝑌 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑌 )  =  ∪  ( 𝐹  “  𝑌 ) ) ) ) | 
						
							| 10 |  | isacs3lem | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑠  ∈  𝒫  𝐶 ( ( toInc ‘ 𝑠 )  ∈  Dirset  →  ∪  𝑠  ∈  𝐶 ) ) ) | 
						
							| 11 | 1 | isacs4lem | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑠  ∈  𝒫  𝐶 ( ( toInc ‘ 𝑠 )  ∈  Dirset  →  ∪  𝑠  ∈  𝐶 ) )  →  ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑡  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 ) ) ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑡  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 ) ) ) ) | 
						
							| 13 | 12 | simprd | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  ∀ 𝑡  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 ) ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐶  ∈  ( ACS ‘ 𝑋 )  ∧  𝑌  ⊆  𝒫  𝑋 )  →  ∀ 𝑡  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 ) ) ) | 
						
							| 15 |  | elfvdm | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  𝑋  ∈  dom  ACS ) | 
						
							| 16 |  | pwexg | ⊢ ( 𝑋  ∈  dom  ACS  →  𝒫  𝑋  ∈  V ) | 
						
							| 17 |  | elpw2g | ⊢ ( 𝒫  𝑋  ∈  V  →  ( 𝑌  ∈  𝒫  𝒫  𝑋  ↔  𝑌  ⊆  𝒫  𝑋 ) ) | 
						
							| 18 | 15 16 17 | 3syl | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  ( 𝑌  ∈  𝒫  𝒫  𝑋  ↔  𝑌  ⊆  𝒫  𝑋 ) ) | 
						
							| 19 | 18 | biimpar | ⊢ ( ( 𝐶  ∈  ( ACS ‘ 𝑋 )  ∧  𝑌  ⊆  𝒫  𝑋 )  →  𝑌  ∈  𝒫  𝒫  𝑋 ) | 
						
							| 20 | 9 14 19 | rspcdva | ⊢ ( ( 𝐶  ∈  ( ACS ‘ 𝑋 )  ∧  𝑌  ⊆  𝒫  𝑋 )  →  ( ( toInc ‘ 𝑌 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑌 )  =  ∪  ( 𝐹  “  𝑌 ) ) ) | 
						
							| 21 | 20 | 3impia | ⊢ ( ( 𝐶  ∈  ( ACS ‘ 𝑋 )  ∧  𝑌  ⊆  𝒫  𝑋  ∧  ( toInc ‘ 𝑌 )  ∈  Dirset )  →  ( 𝐹 ‘ ∪  𝑌 )  =  ∪  ( 𝐹  “  𝑌 ) ) |