Metamath Proof Explorer


Theorem acsdrsel

Description: An algebraic closure system contains all directed unions of closed sets. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Assertion acsdrsel ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌𝐶 ∧ ( toInc ‘ 𝑌 ) ∈ Dirset ) → 𝑌𝐶 )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑠 = 𝑌 → ( toInc ‘ 𝑠 ) = ( toInc ‘ 𝑌 ) )
2 1 eleq1d ( 𝑠 = 𝑌 → ( ( toInc ‘ 𝑠 ) ∈ Dirset ↔ ( toInc ‘ 𝑌 ) ∈ Dirset ) )
3 unieq ( 𝑠 = 𝑌 𝑠 = 𝑌 )
4 3 eleq1d ( 𝑠 = 𝑌 → ( 𝑠𝐶 𝑌𝐶 ) )
5 2 4 imbi12d ( 𝑠 = 𝑌 → ( ( ( toInc ‘ 𝑠 ) ∈ Dirset → 𝑠𝐶 ) ↔ ( ( toInc ‘ 𝑌 ) ∈ Dirset → 𝑌𝐶 ) ) )
6 isacs3lem ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → 𝑠𝐶 ) ) )
7 6 simprd ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → 𝑠𝐶 ) )
8 7 adantr ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌𝐶 ) → ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → 𝑠𝐶 ) )
9 elpw2g ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝑌 ∈ 𝒫 𝐶𝑌𝐶 ) )
10 9 biimpar ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌𝐶 ) → 𝑌 ∈ 𝒫 𝐶 )
11 5 8 10 rspcdva ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌𝐶 ) → ( ( toInc ‘ 𝑌 ) ∈ Dirset → 𝑌𝐶 ) )
12 11 3impia ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌𝐶 ∧ ( toInc ‘ 𝑌 ) ∈ Dirset ) → 𝑌𝐶 )