Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑠 = 𝑌 → ( toInc ‘ 𝑠 ) = ( toInc ‘ 𝑌 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑠 = 𝑌 → ( ( toInc ‘ 𝑠 ) ∈ Dirset ↔ ( toInc ‘ 𝑌 ) ∈ Dirset ) ) |
3 |
|
unieq |
⊢ ( 𝑠 = 𝑌 → ∪ 𝑠 = ∪ 𝑌 ) |
4 |
3
|
eleq1d |
⊢ ( 𝑠 = 𝑌 → ( ∪ 𝑠 ∈ 𝐶 ↔ ∪ 𝑌 ∈ 𝐶 ) ) |
5 |
2 4
|
imbi12d |
⊢ ( 𝑠 = 𝑌 → ( ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ↔ ( ( toInc ‘ 𝑌 ) ∈ Dirset → ∪ 𝑌 ∈ 𝐶 ) ) ) |
6 |
|
isacs3lem |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ) |
7 |
6
|
simprd |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝐶 ) → ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) |
9 |
|
elpw2g |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝑌 ∈ 𝒫 𝐶 ↔ 𝑌 ⊆ 𝐶 ) ) |
10 |
9
|
biimpar |
⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝐶 ) → 𝑌 ∈ 𝒫 𝐶 ) |
11 |
5 8 10
|
rspcdva |
⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝐶 ) → ( ( toInc ‘ 𝑌 ) ∈ Dirset → ∪ 𝑌 ∈ 𝐶 ) ) |
12 |
11
|
3impia |
⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝐶 ∧ ( toInc ‘ 𝑌 ) ∈ Dirset ) → ∪ 𝑌 ∈ 𝐶 ) |