Metamath Proof Explorer


Theorem acsexdimd

Description: In an algebraic closure system whose closure operator has the exchange property, if two independent sets have equal closure, they are equinumerous. See mreexfidimd for the finite case and acsinfdimd for the infinite case. This is a special case of Theorem 4.2.2 in FaureFrolicher p. 87. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses acsexdimd.1 ( 𝜑𝐴 ∈ ( ACS ‘ 𝑋 ) )
acsexdimd.2 𝑁 = ( mrCls ‘ 𝐴 )
acsexdimd.3 𝐼 = ( mrInd ‘ 𝐴 )
acsexdimd.4 ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) )
acsexdimd.5 ( 𝜑𝑆𝐼 )
acsexdimd.6 ( 𝜑𝑇𝐼 )
acsexdimd.7 ( 𝜑 → ( 𝑁𝑆 ) = ( 𝑁𝑇 ) )
Assertion acsexdimd ( 𝜑𝑆𝑇 )

Proof

Step Hyp Ref Expression
1 acsexdimd.1 ( 𝜑𝐴 ∈ ( ACS ‘ 𝑋 ) )
2 acsexdimd.2 𝑁 = ( mrCls ‘ 𝐴 )
3 acsexdimd.3 𝐼 = ( mrInd ‘ 𝐴 )
4 acsexdimd.4 ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) )
5 acsexdimd.5 ( 𝜑𝑆𝐼 )
6 acsexdimd.6 ( 𝜑𝑇𝐼 )
7 acsexdimd.7 ( 𝜑 → ( 𝑁𝑆 ) = ( 𝑁𝑇 ) )
8 1 acsmred ( 𝜑𝐴 ∈ ( Moore ‘ 𝑋 ) )
9 8 adantr ( ( 𝜑𝑆 ∈ Fin ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) )
10 4 adantr ( ( 𝜑𝑆 ∈ Fin ) → ∀ 𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) )
11 5 adantr ( ( 𝜑𝑆 ∈ Fin ) → 𝑆𝐼 )
12 6 adantr ( ( 𝜑𝑆 ∈ Fin ) → 𝑇𝐼 )
13 simpr ( ( 𝜑𝑆 ∈ Fin ) → 𝑆 ∈ Fin )
14 7 adantr ( ( 𝜑𝑆 ∈ Fin ) → ( 𝑁𝑆 ) = ( 𝑁𝑇 ) )
15 9 2 3 10 11 12 13 14 mreexfidimd ( ( 𝜑𝑆 ∈ Fin ) → 𝑆𝑇 )
16 1 adantr ( ( 𝜑 ∧ ¬ 𝑆 ∈ Fin ) → 𝐴 ∈ ( ACS ‘ 𝑋 ) )
17 5 adantr ( ( 𝜑 ∧ ¬ 𝑆 ∈ Fin ) → 𝑆𝐼 )
18 6 adantr ( ( 𝜑 ∧ ¬ 𝑆 ∈ Fin ) → 𝑇𝐼 )
19 7 adantr ( ( 𝜑 ∧ ¬ 𝑆 ∈ Fin ) → ( 𝑁𝑆 ) = ( 𝑁𝑇 ) )
20 simpr ( ( 𝜑 ∧ ¬ 𝑆 ∈ Fin ) → ¬ 𝑆 ∈ Fin )
21 16 2 3 17 18 19 20 acsinfdimd ( ( 𝜑 ∧ ¬ 𝑆 ∈ Fin ) → 𝑆𝑇 )
22 15 21 pm2.61dan ( 𝜑𝑆𝑇 )