| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acsexdimd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) |
| 2 |
|
acsexdimd.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
| 3 |
|
acsexdimd.3 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
| 4 |
|
acsexdimd.4 |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 5 |
|
acsexdimd.5 |
⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) |
| 6 |
|
acsexdimd.6 |
⊢ ( 𝜑 → 𝑇 ∈ 𝐼 ) |
| 7 |
|
acsexdimd.7 |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) |
| 8 |
1
|
acsmred |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → 𝑆 ∈ 𝐼 ) |
| 12 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → 𝑇 ∈ 𝐼 ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → 𝑆 ∈ Fin ) |
| 14 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) |
| 15 |
9 2 3 10 11 12 13 14
|
mreexfidimd |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ Fin ) → 𝑆 ≈ 𝑇 ) |
| 16 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑆 ∈ Fin ) → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) |
| 17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑆 ∈ Fin ) → 𝑆 ∈ 𝐼 ) |
| 18 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑆 ∈ Fin ) → 𝑇 ∈ 𝐼 ) |
| 19 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑆 ∈ Fin ) → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝑆 ∈ Fin ) → ¬ 𝑆 ∈ Fin ) |
| 21 |
16 2 3 17 18 19 20
|
acsinfdimd |
⊢ ( ( 𝜑 ∧ ¬ 𝑆 ∈ Fin ) → 𝑆 ≈ 𝑇 ) |
| 22 |
15 21
|
pm2.61dan |
⊢ ( 𝜑 → 𝑆 ≈ 𝑇 ) |