Step |
Hyp |
Ref |
Expression |
1 |
|
isacs2.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
2 |
|
acsmre |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
3 |
|
mress |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) → 𝑆 ⊆ 𝑋 ) |
4 |
2 3
|
sylan |
⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) → 𝑆 ⊆ 𝑋 ) |
5 |
4
|
ex |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑋 ) ) |
6 |
5
|
pm4.71rd |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝑆 ∈ 𝐶 ↔ ( 𝑆 ⊆ 𝑋 ∧ 𝑆 ∈ 𝐶 ) ) ) |
7 |
|
eleq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ∈ 𝐶 ↔ 𝑆 ∈ 𝐶 ) ) |
8 |
|
pweq |
⊢ ( 𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆 ) |
9 |
8
|
ineq1d |
⊢ ( 𝑠 = 𝑆 → ( 𝒫 𝑠 ∩ Fin ) = ( 𝒫 𝑆 ∩ Fin ) ) |
10 |
|
sseq2 |
⊢ ( 𝑠 = 𝑆 → ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ↔ ( 𝐹 ‘ 𝑦 ) ⊆ 𝑆 ) ) |
11 |
9 10
|
raleqbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑆 ) ) |
12 |
7 11
|
bibi12d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ↔ ( 𝑆 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑆 ) ) ) |
13 |
1
|
isacs2 |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
14 |
13
|
simprbi |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
16 |
|
elfvdm |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → 𝑋 ∈ dom ACS ) |
17 |
|
elpw2g |
⊢ ( 𝑋 ∈ dom ACS → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
18 |
16 17
|
syl |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
19 |
18
|
biimpar |
⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ 𝒫 𝑋 ) |
20 |
12 15 19
|
rspcdva |
⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑆 ) ) |
21 |
20
|
pm5.32da |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( ( 𝑆 ⊆ 𝑋 ∧ 𝑆 ∈ 𝐶 ) ↔ ( 𝑆 ⊆ 𝑋 ∧ ∀ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑆 ) ) ) |
22 |
6 21
|
bitrd |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝑆 ∈ 𝐶 ↔ ( 𝑆 ⊆ 𝑋 ∧ ∀ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑆 ) ) ) |