| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							funmpt | 
							⊢ Fun  ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  | 
						
						
							| 2 | 
							
								
							 | 
							funiunfv | 
							⊢ ( Fun  ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  →  ∪  𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) ( ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) ) ‘ 𝑐 )  =  ∪  ( ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  “  ( 𝒫  𝑎  ∩  Fin ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mp1i | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  ∪  𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) ( ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) ) ‘ 𝑐 )  =  ∪  ( ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  “  ( 𝒫  𝑎  ∩  Fin ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							elinel1 | 
							⊢ ( 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin )  →  𝑐  ∈  𝒫  𝑎 )  | 
						
						
							| 5 | 
							
								4
							 | 
							elpwid | 
							⊢ ( 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin )  →  𝑐  ⊆  𝑎 )  | 
						
						
							| 6 | 
							
								
							 | 
							elpwi | 
							⊢ ( 𝑎  ∈  𝒫  𝑋  →  𝑎  ⊆  𝑋 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylan9ssr | 
							⊢ ( ( 𝑎  ∈  𝒫  𝑋  ∧  𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) )  →  𝑐  ⊆  𝑋 )  | 
						
						
							| 8 | 
							
								
							 | 
							velpw | 
							⊢ ( 𝑐  ∈  𝒫  𝑋  ↔  𝑐  ⊆  𝑋 )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sylibr | 
							⊢ ( ( 𝑎  ∈  𝒫  𝑋  ∧  𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) )  →  𝑐  ∈  𝒫  𝑋 )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantll | 
							⊢ ( ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  ∧  𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) )  →  𝑐  ∈  𝒫  𝑋 )  | 
						
						
							| 11 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑏  =  𝑐  →  ( 𝑏  =  𝑇  ↔  𝑐  =  𝑇 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ifbid | 
							⊢ ( 𝑏  =  𝑐  →  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ )  =  if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  =  ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  | 
						
						
							| 14 | 
							
								
							 | 
							snex | 
							⊢ { 𝐾 }  ∈  V  | 
						
						
							| 15 | 
							
								
							 | 
							0ex | 
							⊢ ∅  ∈  V  | 
						
						
							| 16 | 
							
								14 15
							 | 
							ifex | 
							⊢ if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ )  ∈  V  | 
						
						
							| 17 | 
							
								12 13 16
							 | 
							fvmpt | 
							⊢ ( 𝑐  ∈  𝒫  𝑋  →  ( ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) ) ‘ 𝑐 )  =  if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  | 
						
						
							| 18 | 
							
								10 17
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  ∧  𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) )  →  ( ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) ) ‘ 𝑐 )  =  if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							iuneq2dv | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  ∪  𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) ( ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) ) ‘ 𝑐 )  =  ∪  𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  | 
						
						
							| 20 | 
							
								3 19
							 | 
							eqtr3d | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  ∪  ( ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  “  ( 𝒫  𝑎  ∩  Fin ) )  =  ∪  𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							sseq1d | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( ∪  ( ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  “  ( 𝒫  𝑎  ∩  Fin ) )  ⊆  𝑎  ↔  ∪  𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ )  ⊆  𝑎 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							iunss | 
							⊢ ( ∪  𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ )  ⊆  𝑎  ↔  ∀ 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ )  ⊆  𝑎 )  | 
						
						
							| 23 | 
							
								
							 | 
							sseq1 | 
							⊢ ( { 𝐾 }  =  if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ )  →  ( { 𝐾 }  ⊆  𝑎  ↔  if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ )  ⊆  𝑎 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							bibi1d | 
							⊢ ( { 𝐾 }  =  if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ )  →  ( ( { 𝐾 }  ⊆  𝑎  ↔  ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) )  ↔  ( if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ )  ⊆  𝑎  ↔  ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							sseq1 | 
							⊢ ( ∅  =  if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ )  →  ( ∅  ⊆  𝑎  ↔  if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ )  ⊆  𝑎 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							bibi1d | 
							⊢ ( ∅  =  if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ )  →  ( ( ∅  ⊆  𝑎  ↔  ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) )  ↔  ( if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ )  ⊆  𝑎  ↔  ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							snssg | 
							⊢ ( 𝐾  ∈  𝑋  →  ( 𝐾  ∈  𝑎  ↔  { 𝐾 }  ⊆  𝑎 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							adantr | 
							⊢ ( ( 𝐾  ∈  𝑋  ∧  𝑐  =  𝑇 )  →  ( 𝐾  ∈  𝑎  ↔  { 𝐾 }  ⊆  𝑎 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							biimt | 
							⊢ ( 𝑐  =  𝑇  →  ( 𝐾  ∈  𝑎  ↔  ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantl | 
							⊢ ( ( 𝐾  ∈  𝑋  ∧  𝑐  =  𝑇 )  →  ( 𝐾  ∈  𝑎  ↔  ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 31 | 
							
								28 30
							 | 
							bitr3d | 
							⊢ ( ( 𝐾  ∈  𝑋  ∧  𝑐  =  𝑇 )  →  ( { 𝐾 }  ⊆  𝑎  ↔  ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							0ss | 
							⊢ ∅  ⊆  𝑎  | 
						
						
							| 33 | 
							
								32
							 | 
							a1i | 
							⊢ ( ¬  𝑐  =  𝑇  →  ∅  ⊆  𝑎 )  | 
						
						
							| 34 | 
							
								
							 | 
							pm2.21 | 
							⊢ ( ¬  𝑐  =  𝑇  →  ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							2thd | 
							⊢ ( ¬  𝑐  =  𝑇  →  ( ∅  ⊆  𝑎  ↔  ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							adantl | 
							⊢ ( ( 𝐾  ∈  𝑋  ∧  ¬  𝑐  =  𝑇 )  →  ( ∅  ⊆  𝑎  ↔  ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 37 | 
							
								24 26 31 36
							 | 
							ifbothda | 
							⊢ ( 𝐾  ∈  𝑋  →  ( if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ )  ⊆  𝑎  ↔  ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							ralbidv | 
							⊢ ( 𝐾  ∈  𝑋  →  ( ∀ 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ )  ⊆  𝑎  ↔  ∀ 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							ad3antlr | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( ∀ 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ )  ⊆  𝑎  ↔  ∀ 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 40 | 
							
								22 39
							 | 
							bitrid | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( ∪  𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) if ( 𝑐  =  𝑇 ,  { 𝐾 } ,  ∅ )  ⊆  𝑎  ↔  ∀ 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							inss1 | 
							⊢ ( 𝒫  𝑎  ∩  Fin )  ⊆  𝒫  𝑎  | 
						
						
							| 42 | 
							
								6
							 | 
							sspwd | 
							⊢ ( 𝑎  ∈  𝒫  𝑋  →  𝒫  𝑎  ⊆  𝒫  𝑋 )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							sstrid | 
							⊢ ( 𝑎  ∈  𝒫  𝑋  →  ( 𝒫  𝑎  ∩  Fin )  ⊆  𝒫  𝑋 )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantl | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( 𝒫  𝑎  ∩  Fin )  ⊆  𝒫  𝑋 )  | 
						
						
							| 45 | 
							
								
							 | 
							ralss | 
							⊢ ( ( 𝒫  𝑎  ∩  Fin )  ⊆  𝒫  𝑋  →  ( ∀ 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 )  ↔  ∀ 𝑐  ∈  𝒫  𝑋 ( 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin )  →  ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) ) ) )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							syl | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( ∀ 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 )  ↔  ∀ 𝑐  ∈  𝒫  𝑋 ( 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin )  →  ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) ) ) )  | 
						
						
							| 47 | 
							
								
							 | 
							bi2.04 | 
							⊢ ( ( 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin )  →  ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) )  ↔  ( 𝑐  =  𝑇  →  ( 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin )  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							ralbii | 
							⊢ ( ∀ 𝑐  ∈  𝒫  𝑋 ( 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin )  →  ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) )  ↔  ∀ 𝑐  ∈  𝒫  𝑋 ( 𝑐  =  𝑇  →  ( 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin )  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 49 | 
							
								
							 | 
							elpwg | 
							⊢ ( 𝑇  ∈  Fin  →  ( 𝑇  ∈  𝒫  𝑋  ↔  𝑇  ⊆  𝑋 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							biimparc | 
							⊢ ( ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin )  →  𝑇  ∈  𝒫  𝑋 )  | 
						
						
							| 51 | 
							
								50
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  𝑇  ∈  𝒫  𝑋 )  | 
						
						
							| 52 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑐  =  𝑇  →  ( 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin )  ↔  𝑇  ∈  ( 𝒫  𝑎  ∩  Fin ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							imbi1d | 
							⊢ ( 𝑐  =  𝑇  →  ( ( 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin )  →  𝐾  ∈  𝑎 )  ↔  ( 𝑇  ∈  ( 𝒫  𝑎  ∩  Fin )  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							ceqsralv | 
							⊢ ( 𝑇  ∈  𝒫  𝑋  →  ( ∀ 𝑐  ∈  𝒫  𝑋 ( 𝑐  =  𝑇  →  ( 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin )  →  𝐾  ∈  𝑎 ) )  ↔  ( 𝑇  ∈  ( 𝒫  𝑎  ∩  Fin )  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 55 | 
							
								51 54
							 | 
							syl | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( ∀ 𝑐  ∈  𝒫  𝑋 ( 𝑐  =  𝑇  →  ( 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin )  →  𝐾  ∈  𝑎 ) )  ↔  ( 𝑇  ∈  ( 𝒫  𝑎  ∩  Fin )  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 56 | 
							
								48 55
							 | 
							bitrid | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( ∀ 𝑐  ∈  𝒫  𝑋 ( 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin )  →  ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 ) )  ↔  ( 𝑇  ∈  ( 𝒫  𝑎  ∩  Fin )  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 57 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  𝑇  ∈  Fin )  | 
						
						
							| 58 | 
							
								57
							 | 
							biantrud | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( 𝑇  ∈  𝒫  𝑎  ↔  ( 𝑇  ∈  𝒫  𝑎  ∧  𝑇  ∈  Fin ) ) )  | 
						
						
							| 59 | 
							
								
							 | 
							elin | 
							⊢ ( 𝑇  ∈  ( 𝒫  𝑎  ∩  Fin )  ↔  ( 𝑇  ∈  𝒫  𝑎  ∧  𝑇  ∈  Fin ) )  | 
						
						
							| 60 | 
							
								58 59
							 | 
							bitr4di | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( 𝑇  ∈  𝒫  𝑎  ↔  𝑇  ∈  ( 𝒫  𝑎  ∩  Fin ) ) )  | 
						
						
							| 61 | 
							
								
							 | 
							vex | 
							⊢ 𝑎  ∈  V  | 
						
						
							| 62 | 
							
								61
							 | 
							elpw2 | 
							⊢ ( 𝑇  ∈  𝒫  𝑎  ↔  𝑇  ⊆  𝑎 )  | 
						
						
							| 63 | 
							
								60 62
							 | 
							bitr3di | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( 𝑇  ∈  ( 𝒫  𝑎  ∩  Fin )  ↔  𝑇  ⊆  𝑎 ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							imbi1d | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( ( 𝑇  ∈  ( 𝒫  𝑎  ∩  Fin )  →  𝐾  ∈  𝑎 )  ↔  ( 𝑇  ⊆  𝑎  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 65 | 
							
								46 56 64
							 | 
							3bitrd | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( ∀ 𝑐  ∈  ( 𝒫  𝑎  ∩  Fin ) ( 𝑐  =  𝑇  →  𝐾  ∈  𝑎 )  ↔  ( 𝑇  ⊆  𝑎  →  𝐾  ∈  𝑎 ) ) )  | 
						
						
							| 66 | 
							
								21 40 65
							 | 
							3bitrrd | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( ( 𝑇  ⊆  𝑎  →  𝐾  ∈  𝑎 )  ↔  ∪  ( ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  “  ( 𝒫  𝑎  ∩  Fin ) )  ⊆  𝑎 ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							rabbidva | 
							⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  →  { 𝑎  ∈  𝒫  𝑋  ∣  ( 𝑇  ⊆  𝑎  →  𝐾  ∈  𝑎 ) }  =  { 𝑎  ∈  𝒫  𝑋  ∣  ∪  ( ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  “  ( 𝒫  𝑎  ∩  Fin ) )  ⊆  𝑎 } )  | 
						
						
							| 68 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  →  𝑋  ∈  𝑉 )  | 
						
						
							| 69 | 
							
								
							 | 
							snelpwi | 
							⊢ ( 𝐾  ∈  𝑋  →  { 𝐾 }  ∈  𝒫  𝑋 )  | 
						
						
							| 70 | 
							
								69
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  →  { 𝐾 }  ∈  𝒫  𝑋 )  | 
						
						
							| 71 | 
							
								
							 | 
							0elpw | 
							⊢ ∅  ∈  𝒫  𝑋  | 
						
						
							| 72 | 
							
								
							 | 
							ifcl | 
							⊢ ( ( { 𝐾 }  ∈  𝒫  𝑋  ∧  ∅  ∈  𝒫  𝑋 )  →  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ )  ∈  𝒫  𝑋 )  | 
						
						
							| 73 | 
							
								70 71 72
							 | 
							sylancl | 
							⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  →  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ )  ∈  𝒫  𝑋 )  | 
						
						
							| 74 | 
							
								73
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  ∧  𝑏  ∈  𝒫  𝑋 )  →  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ )  ∈  𝒫  𝑋 )  | 
						
						
							| 75 | 
							
								74
							 | 
							fmpttd | 
							⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  →  ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) ) : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  | 
						
						
							| 76 | 
							
								
							 | 
							isacs1i | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) ) : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  →  { 𝑎  ∈  𝒫  𝑋  ∣  ∪  ( ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  “  ( 𝒫  𝑎  ∩  Fin ) )  ⊆  𝑎 }  ∈  ( ACS ‘ 𝑋 ) )  | 
						
						
							| 77 | 
							
								68 75 76
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  →  { 𝑎  ∈  𝒫  𝑋  ∣  ∪  ( ( 𝑏  ∈  𝒫  𝑋  ↦  if ( 𝑏  =  𝑇 ,  { 𝐾 } ,  ∅ ) )  “  ( 𝒫  𝑎  ∩  Fin ) )  ⊆  𝑎 }  ∈  ( ACS ‘ 𝑋 ) )  | 
						
						
							| 78 | 
							
								67 77
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐾  ∈  𝑋 )  ∧  ( 𝑇  ⊆  𝑋  ∧  𝑇  ∈  Fin ) )  →  { 𝑎  ∈  𝒫  𝑋  ∣  ( 𝑇  ⊆  𝑎  →  𝐾  ∈  𝑎 ) }  ∈  ( ACS ‘ 𝑋 ) )  |