Metamath Proof Explorer


Theorem acsfn1

Description: Algebraicity of a one-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion acsfn1 ( ( 𝑋𝑉 ∧ ∀ 𝑏𝑋 𝐸𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏𝑎 𝐸𝑎 } ∈ ( ACS ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 elpwi ( 𝑎 ∈ 𝒫 𝑋𝑎𝑋 )
2 ralss ( 𝑎𝑋 → ( ∀ 𝑏𝑎 𝐸𝑎 ↔ ∀ 𝑏𝑋 ( 𝑏𝑎𝐸𝑎 ) ) )
3 1 2 syl ( 𝑎 ∈ 𝒫 𝑋 → ( ∀ 𝑏𝑎 𝐸𝑎 ↔ ∀ 𝑏𝑋 ( 𝑏𝑎𝐸𝑎 ) ) )
4 vex 𝑏 ∈ V
5 4 snss ( 𝑏𝑎 ↔ { 𝑏 } ⊆ 𝑎 )
6 5 imbi1i ( ( 𝑏𝑎𝐸𝑎 ) ↔ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) )
7 6 ralbii ( ∀ 𝑏𝑋 ( 𝑏𝑎𝐸𝑎 ) ↔ ∀ 𝑏𝑋 ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) )
8 3 7 bitrdi ( 𝑎 ∈ 𝒫 𝑋 → ( ∀ 𝑏𝑎 𝐸𝑎 ↔ ∀ 𝑏𝑋 ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) ) )
9 8 rabbiia { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏𝑎 𝐸𝑎 } = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏𝑋 ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) }
10 riinrab ( 𝒫 𝑋 𝑏𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏𝑋 ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) }
11 9 10 eqtr4i { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏𝑎 𝐸𝑎 } = ( 𝒫 𝑋 𝑏𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } )
12 mreacs ( 𝑋𝑉 → ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) )
13 simpll ( ( ( 𝑋𝑉𝑏𝑋 ) ∧ 𝐸𝑋 ) → 𝑋𝑉 )
14 simpr ( ( ( 𝑋𝑉𝑏𝑋 ) ∧ 𝐸𝑋 ) → 𝐸𝑋 )
15 snssi ( 𝑏𝑋 → { 𝑏 } ⊆ 𝑋 )
16 15 ad2antlr ( ( ( 𝑋𝑉𝑏𝑋 ) ∧ 𝐸𝑋 ) → { 𝑏 } ⊆ 𝑋 )
17 snfi { 𝑏 } ∈ Fin
18 17 a1i ( ( ( 𝑋𝑉𝑏𝑋 ) ∧ 𝐸𝑋 ) → { 𝑏 } ∈ Fin )
19 acsfn ( ( ( 𝑋𝑉𝐸𝑋 ) ∧ ( { 𝑏 } ⊆ 𝑋 ∧ { 𝑏 } ∈ Fin ) ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ∈ ( ACS ‘ 𝑋 ) )
20 13 14 16 18 19 syl22anc ( ( ( 𝑋𝑉𝑏𝑋 ) ∧ 𝐸𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ∈ ( ACS ‘ 𝑋 ) )
21 20 ex ( ( 𝑋𝑉𝑏𝑋 ) → ( 𝐸𝑋 → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) )
22 21 ralimdva ( 𝑋𝑉 → ( ∀ 𝑏𝑋 𝐸𝑋 → ∀ 𝑏𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) )
23 22 imp ( ( 𝑋𝑉 ∧ ∀ 𝑏𝑋 𝐸𝑋 ) → ∀ 𝑏𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ∈ ( ACS ‘ 𝑋 ) )
24 mreriincl ( ( ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ∧ ∀ 𝑏𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) → ( 𝒫 𝑋 𝑏𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) )
25 12 23 24 syl2an2r ( ( 𝑋𝑉 ∧ ∀ 𝑏𝑋 𝐸𝑋 ) → ( 𝒫 𝑋 𝑏𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎𝐸𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) )
26 11 25 eqeltrid ( ( 𝑋𝑉 ∧ ∀ 𝑏𝑋 𝐸𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏𝑎 𝐸𝑎 } ∈ ( ACS ‘ 𝑋 ) )