Step |
Hyp |
Ref |
Expression |
1 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋 ) |
2 |
|
ralss |
⊢ ( 𝑎 ⊆ 𝑋 → ( ∀ 𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀ 𝑏 ∈ 𝑋 ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → ( ∀ 𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀ 𝑏 ∈ 𝑋 ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) |
4 |
|
vex |
⊢ 𝑏 ∈ V |
5 |
4
|
snss |
⊢ ( 𝑏 ∈ 𝑎 ↔ { 𝑏 } ⊆ 𝑎 ) |
6 |
5
|
imbi1i |
⊢ ( ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ↔ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) |
7 |
6
|
ralbii |
⊢ ( ∀ 𝑏 ∈ 𝑋 ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ↔ ∀ 𝑏 ∈ 𝑋 ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) |
8 |
3 7
|
bitrdi |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → ( ∀ 𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀ 𝑏 ∈ 𝑋 ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) |
9 |
8
|
rabbiia |
⊢ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 } = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑋 ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } |
10 |
|
riinrab |
⊢ ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑋 ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } |
11 |
9 10
|
eqtr4i |
⊢ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 } = ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) |
12 |
|
mreacs |
⊢ ( 𝑋 ∈ 𝑉 → ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ) |
13 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝐸 ∈ 𝑋 ) → 𝑋 ∈ 𝑉 ) |
14 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝐸 ∈ 𝑋 ) → 𝐸 ∈ 𝑋 ) |
15 |
|
snssi |
⊢ ( 𝑏 ∈ 𝑋 → { 𝑏 } ⊆ 𝑋 ) |
16 |
15
|
ad2antlr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝐸 ∈ 𝑋 ) → { 𝑏 } ⊆ 𝑋 ) |
17 |
|
snfi |
⊢ { 𝑏 } ∈ Fin |
18 |
17
|
a1i |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝐸 ∈ 𝑋 ) → { 𝑏 } ∈ Fin ) |
19 |
|
acsfn |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐸 ∈ 𝑋 ) ∧ ( { 𝑏 } ⊆ 𝑋 ∧ { 𝑏 } ∈ Fin ) ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
20 |
13 14 16 18 19
|
syl22anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
21 |
20
|
ex |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) → ( 𝐸 ∈ 𝑋 → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) ) |
22 |
21
|
ralimdva |
⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑏 ∈ 𝑋 𝐸 ∈ 𝑋 → ∀ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) ) |
23 |
22
|
imp |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ∀ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
24 |
|
mreriincl |
⊢ ( ( ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ∧ ∀ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) → ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) ) |
25 |
12 23 24
|
syl2an2r |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) ) |
26 |
11 25
|
eqeltrid |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑋 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) |