Step |
Hyp |
Ref |
Expression |
1 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋 ) |
2 |
|
ralss |
⊢ ( 𝑎 ⊆ 𝑋 → ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀ 𝑏 ∈ 𝑋 ( 𝑏 ∈ 𝑎 → ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 ) ) ) |
3 |
|
ralss |
⊢ ( 𝑎 ⊆ 𝑋 → ( ∀ 𝑐 ∈ 𝑎 ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ↔ ∀ 𝑐 ∈ 𝑋 ( 𝑐 ∈ 𝑎 → ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) ) |
4 |
|
r19.21v |
⊢ ( ∀ 𝑐 ∈ 𝑎 ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ↔ ( 𝑏 ∈ 𝑎 → ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 ) ) |
5 |
|
impexp |
⊢ ( ( ( 𝑐 ∈ 𝑎 ∧ 𝑏 ∈ 𝑎 ) → 𝐸 ∈ 𝑎 ) ↔ ( 𝑐 ∈ 𝑎 → ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) |
6 |
|
vex |
⊢ 𝑐 ∈ V |
7 |
|
vex |
⊢ 𝑏 ∈ V |
8 |
6 7
|
prss |
⊢ ( ( 𝑐 ∈ 𝑎 ∧ 𝑏 ∈ 𝑎 ) ↔ { 𝑐 , 𝑏 } ⊆ 𝑎 ) |
9 |
8
|
imbi1i |
⊢ ( ( ( 𝑐 ∈ 𝑎 ∧ 𝑏 ∈ 𝑎 ) → 𝐸 ∈ 𝑎 ) ↔ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) |
10 |
5 9
|
bitr3i |
⊢ ( ( 𝑐 ∈ 𝑎 → ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ) ↔ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) |
11 |
10
|
ralbii |
⊢ ( ∀ 𝑐 ∈ 𝑋 ( 𝑐 ∈ 𝑎 → ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ) ↔ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) |
12 |
3 4 11
|
3bitr3g |
⊢ ( 𝑎 ⊆ 𝑋 → ( ( 𝑏 ∈ 𝑎 → ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 ) ↔ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑎 ⊆ 𝑋 → ( ∀ 𝑏 ∈ 𝑋 ( 𝑏 ∈ 𝑎 → ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 ) ↔ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) |
14 |
2 13
|
bitrd |
⊢ ( 𝑎 ⊆ 𝑋 → ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) |
15 |
1 14
|
syl |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) |
16 |
15
|
rabbiia |
⊢ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } |
17 |
|
riinrab |
⊢ ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } |
18 |
16 17
|
eqtr4i |
⊢ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } = ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) |
19 |
|
mreacs |
⊢ ( 𝑋 ∈ 𝑉 → ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ) |
20 |
|
riinrab |
⊢ ( 𝒫 𝑋 ∩ ∩ 𝑐 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } |
21 |
19
|
ad2antrr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ) |
22 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝐸 ∈ 𝑋 ) ) → 𝑋 ∈ 𝑉 ) |
23 |
|
simprr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝐸 ∈ 𝑋 ) ) → 𝐸 ∈ 𝑋 ) |
24 |
|
prssi |
⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → { 𝑐 , 𝑏 } ⊆ 𝑋 ) |
25 |
24
|
ancoms |
⊢ ( ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) → { 𝑐 , 𝑏 } ⊆ 𝑋 ) |
26 |
25
|
ad2ant2lr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝐸 ∈ 𝑋 ) ) → { 𝑐 , 𝑏 } ⊆ 𝑋 ) |
27 |
|
prfi |
⊢ { 𝑐 , 𝑏 } ∈ Fin |
28 |
27
|
a1i |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝐸 ∈ 𝑋 ) ) → { 𝑐 , 𝑏 } ∈ Fin ) |
29 |
|
acsfn |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐸 ∈ 𝑋 ) ∧ ( { 𝑐 , 𝑏 } ⊆ 𝑋 ∧ { 𝑐 , 𝑏 } ∈ Fin ) ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
30 |
22 23 26 28 29
|
syl22anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝐸 ∈ 𝑋 ) ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
31 |
30
|
expr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) → ( 𝐸 ∈ 𝑋 → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) ) |
32 |
31
|
ralimdva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) → ( ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → ∀ 𝑐 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) ) |
33 |
32
|
imp |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ∀ 𝑐 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
34 |
|
mreriincl |
⊢ ( ( ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ∧ ∀ 𝑐 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) → ( 𝒫 𝑋 ∩ ∩ 𝑐 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) ) |
35 |
21 33 34
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ( 𝒫 𝑋 ∩ ∩ 𝑐 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) ) |
36 |
20 35
|
eqeltrrid |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
37 |
36
|
ex |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) → ( ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) ) |
38 |
37
|
ralimdva |
⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → ∀ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) ) |
39 |
38
|
imp |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ∀ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
40 |
|
mreriincl |
⊢ ( ( ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ∧ ∀ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) → ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) ) |
41 |
19 39 40
|
syl2an2r |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) ) |
42 |
18 41
|
eqeltrid |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) |