| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpwi | ⊢ ( 𝑎  ∈  𝒫  𝑋  →  𝑎  ⊆  𝑋 ) | 
						
							| 2 |  | ralss | ⊢ ( 𝑎  ⊆  𝑋  →  ( ∀ 𝑏  ∈  𝑎 ∀ 𝑐  ∈  𝑎 𝐸  ∈  𝑎  ↔  ∀ 𝑏  ∈  𝑋 ( 𝑏  ∈  𝑎  →  ∀ 𝑐  ∈  𝑎 𝐸  ∈  𝑎 ) ) ) | 
						
							| 3 |  | ralss | ⊢ ( 𝑎  ⊆  𝑋  →  ( ∀ 𝑐  ∈  𝑎 ( 𝑏  ∈  𝑎  →  𝐸  ∈  𝑎 )  ↔  ∀ 𝑐  ∈  𝑋 ( 𝑐  ∈  𝑎  →  ( 𝑏  ∈  𝑎  →  𝐸  ∈  𝑎 ) ) ) ) | 
						
							| 4 |  | r19.21v | ⊢ ( ∀ 𝑐  ∈  𝑎 ( 𝑏  ∈  𝑎  →  𝐸  ∈  𝑎 )  ↔  ( 𝑏  ∈  𝑎  →  ∀ 𝑐  ∈  𝑎 𝐸  ∈  𝑎 ) ) | 
						
							| 5 |  | impexp | ⊢ ( ( ( 𝑐  ∈  𝑎  ∧  𝑏  ∈  𝑎 )  →  𝐸  ∈  𝑎 )  ↔  ( 𝑐  ∈  𝑎  →  ( 𝑏  ∈  𝑎  →  𝐸  ∈  𝑎 ) ) ) | 
						
							| 6 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 7 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 8 | 6 7 | prss | ⊢ ( ( 𝑐  ∈  𝑎  ∧  𝑏  ∈  𝑎 )  ↔  { 𝑐 ,  𝑏 }  ⊆  𝑎 ) | 
						
							| 9 | 8 | imbi1i | ⊢ ( ( ( 𝑐  ∈  𝑎  ∧  𝑏  ∈  𝑎 )  →  𝐸  ∈  𝑎 )  ↔  ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) ) | 
						
							| 10 | 5 9 | bitr3i | ⊢ ( ( 𝑐  ∈  𝑎  →  ( 𝑏  ∈  𝑎  →  𝐸  ∈  𝑎 ) )  ↔  ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) ) | 
						
							| 11 | 10 | ralbii | ⊢ ( ∀ 𝑐  ∈  𝑋 ( 𝑐  ∈  𝑎  →  ( 𝑏  ∈  𝑎  →  𝐸  ∈  𝑎 ) )  ↔  ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) ) | 
						
							| 12 | 3 4 11 | 3bitr3g | ⊢ ( 𝑎  ⊆  𝑋  →  ( ( 𝑏  ∈  𝑎  →  ∀ 𝑐  ∈  𝑎 𝐸  ∈  𝑎 )  ↔  ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) ) ) | 
						
							| 13 | 12 | ralbidv | ⊢ ( 𝑎  ⊆  𝑋  →  ( ∀ 𝑏  ∈  𝑋 ( 𝑏  ∈  𝑎  →  ∀ 𝑐  ∈  𝑎 𝐸  ∈  𝑎 )  ↔  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) ) ) | 
						
							| 14 | 2 13 | bitrd | ⊢ ( 𝑎  ⊆  𝑋  →  ( ∀ 𝑏  ∈  𝑎 ∀ 𝑐  ∈  𝑎 𝐸  ∈  𝑎  ↔  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) ) ) | 
						
							| 15 | 1 14 | syl | ⊢ ( 𝑎  ∈  𝒫  𝑋  →  ( ∀ 𝑏  ∈  𝑎 ∀ 𝑐  ∈  𝑎 𝐸  ∈  𝑎  ↔  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) ) ) | 
						
							| 16 | 15 | rabbiia | ⊢ { 𝑎  ∈  𝒫  𝑋  ∣  ∀ 𝑏  ∈  𝑎 ∀ 𝑐  ∈  𝑎 𝐸  ∈  𝑎 }  =  { 𝑎  ∈  𝒫  𝑋  ∣  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) } | 
						
							| 17 |  | riinrab | ⊢ ( 𝒫  𝑋  ∩  ∩  𝑏  ∈  𝑋 { 𝑎  ∈  𝒫  𝑋  ∣  ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) } )  =  { 𝑎  ∈  𝒫  𝑋  ∣  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) } | 
						
							| 18 | 16 17 | eqtr4i | ⊢ { 𝑎  ∈  𝒫  𝑋  ∣  ∀ 𝑏  ∈  𝑎 ∀ 𝑐  ∈  𝑎 𝐸  ∈  𝑎 }  =  ( 𝒫  𝑋  ∩  ∩  𝑏  ∈  𝑋 { 𝑎  ∈  𝒫  𝑋  ∣  ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) } ) | 
						
							| 19 |  | mreacs | ⊢ ( 𝑋  ∈  𝑉  →  ( ACS ‘ 𝑋 )  ∈  ( Moore ‘ 𝒫  𝑋 ) ) | 
						
							| 20 |  | riinrab | ⊢ ( 𝒫  𝑋  ∩  ∩  𝑐  ∈  𝑋 { 𝑎  ∈  𝒫  𝑋  ∣  ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) } )  =  { 𝑎  ∈  𝒫  𝑋  ∣  ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) } | 
						
							| 21 | 19 | ad2antrr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑏  ∈  𝑋 )  ∧  ∀ 𝑐  ∈  𝑋 𝐸  ∈  𝑋 )  →  ( ACS ‘ 𝑋 )  ∈  ( Moore ‘ 𝒫  𝑋 ) ) | 
						
							| 22 |  | simpll | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑏  ∈  𝑋 )  ∧  ( 𝑐  ∈  𝑋  ∧  𝐸  ∈  𝑋 ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 23 |  | simprr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑏  ∈  𝑋 )  ∧  ( 𝑐  ∈  𝑋  ∧  𝐸  ∈  𝑋 ) )  →  𝐸  ∈  𝑋 ) | 
						
							| 24 |  | prssi | ⊢ ( ( 𝑐  ∈  𝑋  ∧  𝑏  ∈  𝑋 )  →  { 𝑐 ,  𝑏 }  ⊆  𝑋 ) | 
						
							| 25 | 24 | ancoms | ⊢ ( ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 )  →  { 𝑐 ,  𝑏 }  ⊆  𝑋 ) | 
						
							| 26 | 25 | ad2ant2lr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑏  ∈  𝑋 )  ∧  ( 𝑐  ∈  𝑋  ∧  𝐸  ∈  𝑋 ) )  →  { 𝑐 ,  𝑏 }  ⊆  𝑋 ) | 
						
							| 27 |  | prfi | ⊢ { 𝑐 ,  𝑏 }  ∈  Fin | 
						
							| 28 | 27 | a1i | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑏  ∈  𝑋 )  ∧  ( 𝑐  ∈  𝑋  ∧  𝐸  ∈  𝑋 ) )  →  { 𝑐 ,  𝑏 }  ∈  Fin ) | 
						
							| 29 |  | acsfn | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐸  ∈  𝑋 )  ∧  ( { 𝑐 ,  𝑏 }  ⊆  𝑋  ∧  { 𝑐 ,  𝑏 }  ∈  Fin ) )  →  { 𝑎  ∈  𝒫  𝑋  ∣  ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) }  ∈  ( ACS ‘ 𝑋 ) ) | 
						
							| 30 | 22 23 26 28 29 | syl22anc | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑏  ∈  𝑋 )  ∧  ( 𝑐  ∈  𝑋  ∧  𝐸  ∈  𝑋 ) )  →  { 𝑎  ∈  𝒫  𝑋  ∣  ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) }  ∈  ( ACS ‘ 𝑋 ) ) | 
						
							| 31 | 30 | expr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑏  ∈  𝑋 )  ∧  𝑐  ∈  𝑋 )  →  ( 𝐸  ∈  𝑋  →  { 𝑎  ∈  𝒫  𝑋  ∣  ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) }  ∈  ( ACS ‘ 𝑋 ) ) ) | 
						
							| 32 | 31 | ralimdva | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑏  ∈  𝑋 )  →  ( ∀ 𝑐  ∈  𝑋 𝐸  ∈  𝑋  →  ∀ 𝑐  ∈  𝑋 { 𝑎  ∈  𝒫  𝑋  ∣  ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) }  ∈  ( ACS ‘ 𝑋 ) ) ) | 
						
							| 33 | 32 | imp | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑏  ∈  𝑋 )  ∧  ∀ 𝑐  ∈  𝑋 𝐸  ∈  𝑋 )  →  ∀ 𝑐  ∈  𝑋 { 𝑎  ∈  𝒫  𝑋  ∣  ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) }  ∈  ( ACS ‘ 𝑋 ) ) | 
						
							| 34 |  | mreriincl | ⊢ ( ( ( ACS ‘ 𝑋 )  ∈  ( Moore ‘ 𝒫  𝑋 )  ∧  ∀ 𝑐  ∈  𝑋 { 𝑎  ∈  𝒫  𝑋  ∣  ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) }  ∈  ( ACS ‘ 𝑋 ) )  →  ( 𝒫  𝑋  ∩  ∩  𝑐  ∈  𝑋 { 𝑎  ∈  𝒫  𝑋  ∣  ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) } )  ∈  ( ACS ‘ 𝑋 ) ) | 
						
							| 35 | 21 33 34 | syl2anc | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑏  ∈  𝑋 )  ∧  ∀ 𝑐  ∈  𝑋 𝐸  ∈  𝑋 )  →  ( 𝒫  𝑋  ∩  ∩  𝑐  ∈  𝑋 { 𝑎  ∈  𝒫  𝑋  ∣  ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) } )  ∈  ( ACS ‘ 𝑋 ) ) | 
						
							| 36 | 20 35 | eqeltrrid | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑏  ∈  𝑋 )  ∧  ∀ 𝑐  ∈  𝑋 𝐸  ∈  𝑋 )  →  { 𝑎  ∈  𝒫  𝑋  ∣  ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) }  ∈  ( ACS ‘ 𝑋 ) ) | 
						
							| 37 | 36 | ex | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑏  ∈  𝑋 )  →  ( ∀ 𝑐  ∈  𝑋 𝐸  ∈  𝑋  →  { 𝑎  ∈  𝒫  𝑋  ∣  ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) }  ∈  ( ACS ‘ 𝑋 ) ) ) | 
						
							| 38 | 37 | ralimdva | ⊢ ( 𝑋  ∈  𝑉  →  ( ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 𝐸  ∈  𝑋  →  ∀ 𝑏  ∈  𝑋 { 𝑎  ∈  𝒫  𝑋  ∣  ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) }  ∈  ( ACS ‘ 𝑋 ) ) ) | 
						
							| 39 | 38 | imp | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 𝐸  ∈  𝑋 )  →  ∀ 𝑏  ∈  𝑋 { 𝑎  ∈  𝒫  𝑋  ∣  ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) }  ∈  ( ACS ‘ 𝑋 ) ) | 
						
							| 40 |  | mreriincl | ⊢ ( ( ( ACS ‘ 𝑋 )  ∈  ( Moore ‘ 𝒫  𝑋 )  ∧  ∀ 𝑏  ∈  𝑋 { 𝑎  ∈  𝒫  𝑋  ∣  ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) }  ∈  ( ACS ‘ 𝑋 ) )  →  ( 𝒫  𝑋  ∩  ∩  𝑏  ∈  𝑋 { 𝑎  ∈  𝒫  𝑋  ∣  ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) } )  ∈  ( ACS ‘ 𝑋 ) ) | 
						
							| 41 | 19 39 40 | syl2an2r | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 𝐸  ∈  𝑋 )  →  ( 𝒫  𝑋  ∩  ∩  𝑏  ∈  𝑋 { 𝑎  ∈  𝒫  𝑋  ∣  ∀ 𝑐  ∈  𝑋 ( { 𝑐 ,  𝑏 }  ⊆  𝑎  →  𝐸  ∈  𝑎 ) } )  ∈  ( ACS ‘ 𝑋 ) ) | 
						
							| 42 | 18 41 | eqeltrid | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 𝐸  ∈  𝑋 )  →  { 𝑎  ∈  𝒫  𝑋  ∣  ∀ 𝑏  ∈  𝑎 ∀ 𝑐  ∈  𝑎 𝐸  ∈  𝑎 }  ∈  ( ACS ‘ 𝑋 ) ) |