Database
BASIC ORDER THEORY
Lattices
Subset order structures
acsinfdimd
Metamath Proof Explorer
Description: In an algebraic closure system, if two independent sets have equal
closure and one is infinite, then they are equinumerous. This is proven
by using acsdomd twice with acsinfd . See Section II.5 in Cohn
p. 81 to 82. (Contributed by David Moews , 1-May-2017)
Ref
Expression
Hypotheses
acsinfdimd.1
⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) )
acsinfdimd.2
⊢ 𝑁 = ( mrCls ‘ 𝐴 )
acsinfdimd.3
⊢ 𝐼 = ( mrInd ‘ 𝐴 )
acsinfdimd.4
⊢ ( 𝜑 → 𝑆 ∈ 𝐼 )
acsinfdimd.5
⊢ ( 𝜑 → 𝑇 ∈ 𝐼 )
acsinfdimd.6
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) )
acsinfdimd.7
⊢ ( 𝜑 → ¬ 𝑆 ∈ Fin )
Assertion
acsinfdimd
⊢ ( 𝜑 → 𝑆 ≈ 𝑇 )
Proof
Step
Hyp
Ref
Expression
1
acsinfdimd.1
⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) )
2
acsinfdimd.2
⊢ 𝑁 = ( mrCls ‘ 𝐴 )
3
acsinfdimd.3
⊢ 𝐼 = ( mrInd ‘ 𝐴 )
4
acsinfdimd.4
⊢ ( 𝜑 → 𝑆 ∈ 𝐼 )
5
acsinfdimd.5
⊢ ( 𝜑 → 𝑇 ∈ 𝐼 )
6
acsinfdimd.6
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) )
7
acsinfdimd.7
⊢ ( 𝜑 → ¬ 𝑆 ∈ Fin )
8
1
acsmred
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) )
9
3 8 5
mrissd
⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 )
10
1 2 3 4 9 6 7
acsdomd
⊢ ( 𝜑 → 𝑆 ≼ 𝑇 )
11
3 8 4
mrissd
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 )
12
6
eqcomd
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑇 ) = ( 𝑁 ‘ 𝑆 ) )
13
1 2 3 4 9 6 7
acsinfd
⊢ ( 𝜑 → ¬ 𝑇 ∈ Fin )
14
1 2 3 5 11 12 13
acsdomd
⊢ ( 𝜑 → 𝑇 ≼ 𝑆 )
15
sbth
⊢ ( ( 𝑆 ≼ 𝑇 ∧ 𝑇 ≼ 𝑆 ) → 𝑆 ≈ 𝑇 )
16
10 14 15
syl2anc
⊢ ( 𝜑 → 𝑆 ≈ 𝑇 )