| Step | Hyp | Ref | Expression | 
						
							| 1 |  | acsmap2d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ( ACS ‘ 𝑋 ) ) | 
						
							| 2 |  | acsmap2d.2 | ⊢ 𝑁  =  ( mrCls ‘ 𝐴 ) | 
						
							| 3 |  | acsmap2d.3 | ⊢ 𝐼  =  ( mrInd ‘ 𝐴 ) | 
						
							| 4 |  | acsmap2d.4 | ⊢ ( 𝜑  →  𝑆  ∈  𝐼 ) | 
						
							| 5 |  | acsmap2d.5 | ⊢ ( 𝜑  →  𝑇  ⊆  𝑋 ) | 
						
							| 6 |  | acsmap2d.6 | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑆 )  =  ( 𝑁 ‘ 𝑇 ) ) | 
						
							| 7 | 1 | acsmred | ⊢ ( 𝜑  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 8 | 3 7 4 | mrissd | ⊢ ( 𝜑  →  𝑆  ⊆  𝑋 ) | 
						
							| 9 | 7 2 5 | mrcssidd | ⊢ ( 𝜑  →  𝑇  ⊆  ( 𝑁 ‘ 𝑇 ) ) | 
						
							| 10 | 9 6 | sseqtrrd | ⊢ ( 𝜑  →  𝑇  ⊆  ( 𝑁 ‘ 𝑆 ) ) | 
						
							| 11 | 1 2 8 10 | acsmapd | ⊢ ( 𝜑  →  ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) ) | 
						
							| 12 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin ) ) | 
						
							| 13 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 14 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  𝑆  ∈  𝐼 ) | 
						
							| 15 | 3 13 14 | mrissd | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  𝑆  ⊆  𝑋 ) | 
						
							| 16 | 13 2 15 | mrcssidd | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  𝑆  ⊆  ( 𝑁 ‘ 𝑆 ) ) | 
						
							| 17 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  ( 𝑁 ‘ 𝑆 )  =  ( 𝑁 ‘ 𝑇 ) ) | 
						
							| 18 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) | 
						
							| 19 | 13 2 | mrcssvd | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  ( 𝑁 ‘ ∪  ran  𝑓 )  ⊆  𝑋 ) | 
						
							| 20 | 13 2 18 19 | mrcssd | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  ( 𝑁 ‘ 𝑇 )  ⊆  ( 𝑁 ‘ ( 𝑁 ‘ ∪  ran  𝑓 ) ) ) | 
						
							| 21 |  | frn | ⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  →  ran  𝑓  ⊆  ( 𝒫  𝑆  ∩  Fin ) ) | 
						
							| 22 | 21 | unissd | ⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  →  ∪  ran  𝑓  ⊆  ∪  ( 𝒫  𝑆  ∩  Fin ) ) | 
						
							| 23 |  | unifpw | ⊢ ∪  ( 𝒫  𝑆  ∩  Fin )  =  𝑆 | 
						
							| 24 | 22 23 | sseqtrdi | ⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  →  ∪  ran  𝑓  ⊆  𝑆 ) | 
						
							| 25 | 24 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  ∪  ran  𝑓  ⊆  𝑆 ) | 
						
							| 26 | 25 15 | sstrd | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  ∪  ran  𝑓  ⊆  𝑋 ) | 
						
							| 27 | 13 2 26 | mrcidmd | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  ( 𝑁 ‘ ( 𝑁 ‘ ∪  ran  𝑓 ) )  =  ( 𝑁 ‘ ∪  ran  𝑓 ) ) | 
						
							| 28 | 20 27 | sseqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  ( 𝑁 ‘ 𝑇 )  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) | 
						
							| 29 | 17 28 | eqsstrd | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  ( 𝑁 ‘ 𝑆 )  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) | 
						
							| 30 | 16 29 | sstrd | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  𝑆  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) | 
						
							| 31 | 13 2 3 30 25 14 | mrissmrcd | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  𝑆  =  ∪  ran  𝑓 ) | 
						
							| 32 | 12 31 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) )  →  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑆  =  ∪  ran  𝑓 ) ) | 
						
							| 33 | 32 | ex | ⊢ ( 𝜑  →  ( ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) )  →  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑆  =  ∪  ran  𝑓 ) ) ) | 
						
							| 34 | 33 | eximdv | ⊢ ( 𝜑  →  ( ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) )  →  ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑆  =  ∪  ran  𝑓 ) ) ) | 
						
							| 35 | 11 34 | mpd | ⊢ ( 𝜑  →  ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑆  =  ∪  ran  𝑓 ) ) |