Step |
Hyp |
Ref |
Expression |
1 |
|
acsmap2d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) |
2 |
|
acsmap2d.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
3 |
|
acsmap2d.3 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
4 |
|
acsmap2d.4 |
⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) |
5 |
|
acsmap2d.5 |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) |
6 |
|
acsmap2d.6 |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) |
7 |
1
|
acsmred |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
8 |
3 7 4
|
mrissd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
9 |
7 2 5
|
mrcssidd |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑁 ‘ 𝑇 ) ) |
10 |
9 6
|
sseqtrrd |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
11 |
1 2 8 10
|
acsmapd |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |
12 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ) |
13 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → 𝑆 ∈ 𝐼 ) |
15 |
3 13 14
|
mrissd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → 𝑆 ⊆ 𝑋 ) |
16 |
13 2 15
|
mrcssidd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
17 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) |
18 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
19 |
13 2
|
mrcssvd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ( 𝑁 ‘ ∪ ran 𝑓 ) ⊆ 𝑋 ) |
20 |
13 2 18 19
|
mrcssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ( 𝑁 ‘ 𝑇 ) ⊆ ( 𝑁 ‘ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |
21 |
|
frn |
⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ran 𝑓 ⊆ ( 𝒫 𝑆 ∩ Fin ) ) |
22 |
21
|
unissd |
⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ∪ ran 𝑓 ⊆ ∪ ( 𝒫 𝑆 ∩ Fin ) ) |
23 |
|
unifpw |
⊢ ∪ ( 𝒫 𝑆 ∩ Fin ) = 𝑆 |
24 |
22 23
|
sseqtrdi |
⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ∪ ran 𝑓 ⊆ 𝑆 ) |
25 |
24
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ∪ ran 𝑓 ⊆ 𝑆 ) |
26 |
25 15
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ∪ ran 𝑓 ⊆ 𝑋 ) |
27 |
13 2 26
|
mrcidmd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ( 𝑁 ‘ ( 𝑁 ‘ ∪ ran 𝑓 ) ) = ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
28 |
20 27
|
sseqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ( 𝑁 ‘ 𝑇 ) ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
29 |
17 28
|
eqsstrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ( 𝑁 ‘ 𝑆 ) ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
30 |
16 29
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → 𝑆 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
31 |
13 2 3 30 25 14
|
mrissmrcd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → 𝑆 = ∪ ran 𝑓 ) |
32 |
12 31
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) → ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) |
33 |
32
|
ex |
⊢ ( 𝜑 → ( ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) → ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) ) |
34 |
33
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) ) |
35 |
11 34
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) |