| Step | Hyp | Ref | Expression | 
						
							| 1 |  | acsmapd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ( ACS ‘ 𝑋 ) ) | 
						
							| 2 |  | acsmapd.2 | ⊢ 𝑁  =  ( mrCls ‘ 𝐴 ) | 
						
							| 3 |  | acsmapd.3 | ⊢ ( 𝜑  →  𝑆  ⊆  𝑋 ) | 
						
							| 4 |  | acsmapd.4 | ⊢ ( 𝜑  →  𝑇  ⊆  ( 𝑁 ‘ 𝑆 ) ) | 
						
							| 5 |  | fvex | ⊢ ( 𝑁 ‘ 𝑆 )  ∈  V | 
						
							| 6 | 5 | ssex | ⊢ ( 𝑇  ⊆  ( 𝑁 ‘ 𝑆 )  →  𝑇  ∈  V ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 8 | 4 | sseld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑇  →  𝑥  ∈  ( 𝑁 ‘ 𝑆 ) ) ) | 
						
							| 9 | 1 2 3 | acsficl2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑁 ‘ 𝑆 )  ↔  ∃ 𝑦  ∈  ( 𝒫  𝑆  ∩  Fin ) 𝑥  ∈  ( 𝑁 ‘ 𝑦 ) ) ) | 
						
							| 10 | 8 9 | sylibd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑇  →  ∃ 𝑦  ∈  ( 𝒫  𝑆  ∩  Fin ) 𝑥  ∈  ( 𝑁 ‘ 𝑦 ) ) ) | 
						
							| 11 | 10 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑇 ∃ 𝑦  ∈  ( 𝒫  𝑆  ∩  Fin ) 𝑥  ∈  ( 𝑁 ‘ 𝑦 ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑥 )  →  ( 𝑁 ‘ 𝑦 )  =  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 13 | 12 | eleq2d | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑥 )  →  ( 𝑥  ∈  ( 𝑁 ‘ 𝑦 )  ↔  𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) | 
						
							| 14 | 13 | ac6sg | ⊢ ( 𝑇  ∈  V  →  ( ∀ 𝑥  ∈  𝑇 ∃ 𝑦  ∈  ( 𝒫  𝑆  ∩  Fin ) 𝑥  ∈  ( 𝑁 ‘ 𝑦 )  →  ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) | 
						
							| 15 | 7 11 14 | sylc | ⊢ ( 𝜑  →  ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) | 
						
							| 16 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  →  𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin ) ) | 
						
							| 17 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 18 |  | nfv | ⊢ Ⅎ 𝑥 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin ) | 
						
							| 19 |  | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 20 | 18 19 | nfan | ⊢ Ⅎ 𝑥 ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 21 | 17 20 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) | 
						
							| 22 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  ∧  𝑥  ∈  𝑇 )  →  𝐴  ∈  ( ACS ‘ 𝑋 ) ) | 
						
							| 23 | 22 | acsmred | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  ∧  𝑥  ∈  𝑇 )  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 24 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  ∧  𝑥  ∈  𝑇 )  →  𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin ) ) | 
						
							| 25 | 24 | ffnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  ∧  𝑥  ∈  𝑇 )  →  𝑓  Fn  𝑇 ) | 
						
							| 26 |  | fnfvelrn | ⊢ ( ( 𝑓  Fn  𝑇  ∧  𝑥  ∈  𝑇 )  →  ( 𝑓 ‘ 𝑥 )  ∈  ran  𝑓 ) | 
						
							| 27 | 25 26 | sylancom | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  ∧  𝑥  ∈  𝑇 )  →  ( 𝑓 ‘ 𝑥 )  ∈  ran  𝑓 ) | 
						
							| 28 | 27 | snssd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  ∧  𝑥  ∈  𝑇 )  →  { ( 𝑓 ‘ 𝑥 ) }  ⊆  ran  𝑓 ) | 
						
							| 29 | 28 | unissd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  ∧  𝑥  ∈  𝑇 )  →  ∪  { ( 𝑓 ‘ 𝑥 ) }  ⊆  ∪  ran  𝑓 ) | 
						
							| 30 |  | frn | ⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  →  ran  𝑓  ⊆  ( 𝒫  𝑆  ∩  Fin ) ) | 
						
							| 31 | 30 | unissd | ⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  →  ∪  ran  𝑓  ⊆  ∪  ( 𝒫  𝑆  ∩  Fin ) ) | 
						
							| 32 |  | unifpw | ⊢ ∪  ( 𝒫  𝑆  ∩  Fin )  =  𝑆 | 
						
							| 33 | 31 32 | sseqtrdi | ⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  →  ∪  ran  𝑓  ⊆  𝑆 ) | 
						
							| 34 | 24 33 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  ∧  𝑥  ∈  𝑇 )  →  ∪  ran  𝑓  ⊆  𝑆 ) | 
						
							| 35 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  ∧  𝑥  ∈  𝑇 )  →  𝑆  ⊆  𝑋 ) | 
						
							| 36 | 34 35 | sstrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  ∧  𝑥  ∈  𝑇 )  →  ∪  ran  𝑓  ⊆  𝑋 ) | 
						
							| 37 | 23 2 29 36 | mrcssd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  ∧  𝑥  ∈  𝑇 )  →  ( 𝑁 ‘ ∪  { ( 𝑓 ‘ 𝑥 ) } )  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) | 
						
							| 38 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  →  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 39 | 38 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  ∧  𝑥  ∈  𝑇 )  →  𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 40 |  | fvex | ⊢ ( 𝑓 ‘ 𝑥 )  ∈  V | 
						
							| 41 | 40 | unisn | ⊢ ∪  { ( 𝑓 ‘ 𝑥 ) }  =  ( 𝑓 ‘ 𝑥 ) | 
						
							| 42 | 41 | fveq2i | ⊢ ( 𝑁 ‘ ∪  { ( 𝑓 ‘ 𝑥 ) } )  =  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 43 | 39 42 | eleqtrrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  ∧  𝑥  ∈  𝑇 )  →  𝑥  ∈  ( 𝑁 ‘ ∪  { ( 𝑓 ‘ 𝑥 ) } ) ) | 
						
							| 44 | 37 43 | sseldd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  ∧  𝑥  ∈  𝑇 )  →  𝑥  ∈  ( 𝑁 ‘ ∪  ran  𝑓 ) ) | 
						
							| 45 | 44 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  →  ( 𝑥  ∈  𝑇  →  𝑥  ∈  ( 𝑁 ‘ ∪  ran  𝑓 ) ) ) | 
						
							| 46 | 21 45 | alrimi | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  →  ∀ 𝑥 ( 𝑥  ∈  𝑇  →  𝑥  ∈  ( 𝑁 ‘ ∪  ran  𝑓 ) ) ) | 
						
							| 47 |  | df-ss | ⊢ ( 𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑇  →  𝑥  ∈  ( 𝑁 ‘ ∪  ran  𝑓 ) ) ) | 
						
							| 48 | 46 47 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  →  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) | 
						
							| 49 | 16 48 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) )  →  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) ) | 
						
							| 50 | 49 | ex | ⊢ ( 𝜑  →  ( ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) )  →  ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) ) ) | 
						
							| 51 | 50 | eximdv | ⊢ ( 𝜑  →  ( ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  ∀ 𝑥  ∈  𝑇 𝑥  ∈  ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) )  →  ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) ) ) | 
						
							| 52 | 15 51 | mpd | ⊢ ( 𝜑  →  ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫  𝑆  ∩  Fin )  ∧  𝑇  ⊆  ( 𝑁 ‘ ∪  ran  𝑓 ) ) ) |