Step |
Hyp |
Ref |
Expression |
1 |
|
acunirnmpt.0 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
acunirnmpt.1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ≠ ∅ ) |
3 |
|
aciunf1lem.a |
⊢ Ⅎ 𝑗 𝐴 |
4 |
|
acunirnmpt2f.c |
⊢ Ⅎ 𝑗 𝐶 |
5 |
|
acunirnmpt2f.d |
⊢ Ⅎ 𝑗 𝐷 |
6 |
|
acunirnmpt2f.2 |
⊢ 𝐶 = ∪ 𝑗 ∈ 𝐴 𝐵 |
7 |
|
acunirnmpt2f.3 |
⊢ ( 𝑗 = ( 𝑓 ‘ 𝑥 ) → 𝐵 = 𝐷 ) |
8 |
|
acunirnmpt2f.4 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
9 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) → 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) |
10 |
|
vex |
⊢ 𝑦 ∈ V |
11 |
|
eqid |
⊢ ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) |
12 |
11
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑗 ∈ 𝐴 𝑦 = 𝐵 ) ) |
13 |
10 12
|
ax-mp |
⊢ ( 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑗 ∈ 𝐴 𝑦 = 𝐵 ) |
14 |
9 13
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) → ∃ 𝑗 ∈ 𝐴 𝑦 = 𝐵 ) |
15 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
16 |
4
|
nfcri |
⊢ Ⅎ 𝑗 𝑥 ∈ 𝐶 |
17 |
15 16
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑦 |
19 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) |
20 |
19
|
nfrn |
⊢ Ⅎ 𝑗 ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) |
21 |
18 20
|
nfel |
⊢ Ⅎ 𝑗 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) |
22 |
17 21
|
nfan |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) |
23 |
|
nfv |
⊢ Ⅎ 𝑗 𝑥 ∈ 𝑦 |
24 |
22 23
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) |
25 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝑦 ) |
26 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
27 |
25 26
|
eleqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝐵 ) |
28 |
27
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑗 ∈ 𝐴 ) → ( 𝑦 = 𝐵 → 𝑥 ∈ 𝐵 ) ) |
29 |
28
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝑗 ∈ 𝐴 → ( 𝑦 = 𝐵 → 𝑥 ∈ 𝐵 ) ) ) |
30 |
24 29
|
reximdai |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) → ( ∃ 𝑗 ∈ 𝐴 𝑦 = 𝐵 → ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 ) ) |
31 |
14 30
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) → ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
32 |
8
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 𝐵 ∈ 𝑊 ) |
33 |
|
dfiun3g |
⊢ ( ∀ 𝑗 ∈ 𝐴 𝐵 ∈ 𝑊 → ∪ 𝑗 ∈ 𝐴 𝐵 = ∪ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) |
34 |
32 33
|
syl |
⊢ ( 𝜑 → ∪ 𝑗 ∈ 𝐴 𝐵 = ∪ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) |
35 |
6 34
|
syl5eq |
⊢ ( 𝜑 → 𝐶 = ∪ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) |
36 |
35
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↔ 𝑥 ∈ ∪ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) ) |
37 |
36
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ∪ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) |
38 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) 𝑥 ∈ 𝑦 ) |
39 |
37 38
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃ 𝑦 ∈ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) 𝑥 ∈ 𝑦 ) |
40 |
31 39
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
41 |
40
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
42 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
43 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐵 |
44 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑘 / 𝑗 ⦌ 𝐵 |
45 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑘 → 𝐵 = ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ) |
46 |
3 42 43 44 45
|
cbvmptf |
⊢ ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ) |
47 |
|
mptexg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑘 ∈ 𝐴 ↦ ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ) ∈ V ) |
48 |
46 47
|
eqeltrid |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
49 |
|
rnexg |
⊢ ( ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ∈ V → ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
50 |
|
uniexg |
⊢ ( ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ∈ V → ∪ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
51 |
1 48 49 50
|
4syl |
⊢ ( 𝜑 → ∪ ran ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
52 |
35 51
|
eqeltrd |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
53 |
|
id |
⊢ ( 𝑐 = 𝐶 → 𝑐 = 𝐶 ) |
54 |
53
|
raleqdv |
⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑥 ∈ 𝑐 ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐶 ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 ) ) |
55 |
53
|
feq2d |
⊢ ( 𝑐 = 𝐶 → ( 𝑓 : 𝑐 ⟶ 𝐴 ↔ 𝑓 : 𝐶 ⟶ 𝐴 ) ) |
56 |
53
|
raleqdv |
⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑥 ∈ 𝑐 𝑥 ∈ 𝐷 ↔ ∀ 𝑥 ∈ 𝐶 𝑥 ∈ 𝐷 ) ) |
57 |
55 56
|
anbi12d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑓 : 𝑐 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝑐 𝑥 ∈ 𝐷 ) ↔ ( 𝑓 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐶 𝑥 ∈ 𝐷 ) ) ) |
58 |
57
|
exbidv |
⊢ ( 𝑐 = 𝐶 → ( ∃ 𝑓 ( 𝑓 : 𝑐 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝑐 𝑥 ∈ 𝐷 ) ↔ ∃ 𝑓 ( 𝑓 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐶 𝑥 ∈ 𝐷 ) ) ) |
59 |
54 58
|
imbi12d |
⊢ ( 𝑐 = 𝐶 → ( ( ∀ 𝑥 ∈ 𝑐 ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 → ∃ 𝑓 ( 𝑓 : 𝑐 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝑐 𝑥 ∈ 𝐷 ) ) ↔ ( ∀ 𝑥 ∈ 𝐶 ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 → ∃ 𝑓 ( 𝑓 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐶 𝑥 ∈ 𝐷 ) ) ) ) |
60 |
5
|
nfcri |
⊢ Ⅎ 𝑗 𝑥 ∈ 𝐷 |
61 |
|
vex |
⊢ 𝑐 ∈ V |
62 |
7
|
eleq2d |
⊢ ( 𝑗 = ( 𝑓 ‘ 𝑥 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐷 ) ) |
63 |
3 60 61 62
|
ac6sf2 |
⊢ ( ∀ 𝑥 ∈ 𝑐 ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 → ∃ 𝑓 ( 𝑓 : 𝑐 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝑐 𝑥 ∈ 𝐷 ) ) |
64 |
59 63
|
vtoclg |
⊢ ( 𝐶 ∈ V → ( ∀ 𝑥 ∈ 𝐶 ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 → ∃ 𝑓 ( 𝑓 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐶 𝑥 ∈ 𝐷 ) ) ) |
65 |
52 64
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐶 ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 → ∃ 𝑓 ( 𝑓 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐶 𝑥 ∈ 𝐷 ) ) ) |
66 |
41 65
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐶 𝑥 ∈ 𝐷 ) ) |