Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ad2ant2.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| Assertion | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜓 ∧ 𝜏 ) ) → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| 2 | 1 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜏 ) ) → 𝜒 ) |
| 3 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜓 ∧ 𝜏 ) ) → 𝜒 ) |