Metamath Proof Explorer


Theorem ad2antll

Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 19-Oct-1999)

Ref Expression
Hypothesis ad2ant.1 ( 𝜑𝜓 )
Assertion ad2antll ( ( 𝜒 ∧ ( 𝜃𝜑 ) ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 ad2ant.1 ( 𝜑𝜓 )
2 1 adantl ( ( 𝜃𝜑 ) → 𝜓 )
3 2 adantl ( ( 𝜒 ∧ ( 𝜃𝜑 ) ) → 𝜓 )