Metamath Proof Explorer
Description: Deduction adding three conjuncts to antecedent. (Contributed by Mario
Carneiro, 5-Jan-2017) (Proof shortened by Wolf Lammen, 5-Apr-2022)
|
|
Ref |
Expression |
|
Hypothesis |
ad2ant.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
Assertion |
ad3antlr |
⊢ ( ( ( ( 𝜒 ∧ 𝜑 ) ∧ 𝜃 ) ∧ 𝜏 ) → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ad2ant.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
1
|
adantl |
⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
3 |
2
|
ad2antrr |
⊢ ( ( ( ( 𝜒 ∧ 𝜑 ) ∧ 𝜃 ) ∧ 𝜏 ) → 𝜓 ) |