Metamath Proof Explorer


Theorem ad4ant13

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 14-Apr-2022)

Ref Expression
Hypothesis ad4ant2.1 ( ( 𝜑𝜓 ) → 𝜒 )
Assertion ad4ant13 ( ( ( ( 𝜑𝜃 ) ∧ 𝜓 ) ∧ 𝜏 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 ad4ant2.1 ( ( 𝜑𝜓 ) → 𝜒 )
2 1 adantr ( ( ( 𝜑𝜓 ) ∧ 𝜏 ) → 𝜒 )
3 2 adantllr ( ( ( ( 𝜑𝜃 ) ∧ 𝜓 ) ∧ 𝜏 ) → 𝜒 )