Metamath Proof Explorer


Theorem ad5ant2345

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypothesis ad5ant2345.1 ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )
Assertion ad5ant2345 ( ( ( ( ( 𝜂𝜑 ) ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 ad5ant2345.1 ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )
2 1 exp41 ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) ) )
3 2 adantl ( ( 𝜂𝜑 ) → ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) ) )
4 3 imp41 ( ( ( ( ( 𝜂𝜑 ) ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )