Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ad5ant2345.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
Assertion | ad5ant2345 | ⊢ ( ( ( ( ( 𝜂 ∧ 𝜑 ) ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad5ant2345.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
2 | 1 | exp41 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → 𝜏 ) ) ) ) |
3 | 2 | adantl | ⊢ ( ( 𝜂 ∧ 𝜑 ) → ( 𝜓 → ( 𝜒 → ( 𝜃 → 𝜏 ) ) ) ) |
4 | 3 | imp41 | ⊢ ( ( ( ( ( 𝜂 ∧ 𝜑 ) ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |