Metamath Proof Explorer
		
		
		
		Description:  Deduction adding 7 conjuncts to antecedent.  (Contributed by Mario
       Carneiro, 5-Jan-2017)  (Proof shortened by Wolf Lammen, 5-Apr-2022)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | ad2ant.1 | ⊢ ( 𝜑  →  𝜓 ) | 
				
					|  | Assertion | ad7antlr | ⊢  ( ( ( ( ( ( ( ( 𝜒  ∧  𝜑 )  ∧  𝜃 )  ∧  𝜏 )  ∧  𝜂 )  ∧  𝜁 )  ∧  𝜎 )  ∧  𝜌 )  →  𝜓 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ad2ant.1 | ⊢ ( 𝜑  →  𝜓 ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝜒  ∧  𝜑 )  →  𝜓 ) | 
						
							| 3 | 2 | ad6antr | ⊢ ( ( ( ( ( ( ( ( 𝜒  ∧  𝜑 )  ∧  𝜃 )  ∧  𝜏 )  ∧  𝜂 )  ∧  𝜁 )  ∧  𝜎 )  ∧  𝜌 )  →  𝜓 ) |