Description: Deduction adding 1 conjunct to antecedent. (Contributed by Thierry Arnoux, 11-Feb-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | adantl6r.1 | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜁 ) ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) ∧ 𝜆 ) → 𝜅 ) | |
Assertion | adantl6r | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝜏 ) ∧ 𝜂 ) ∧ 𝜁 ) ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) ∧ 𝜆 ) → 𝜅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adantl6r.1 | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜁 ) ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) ∧ 𝜆 ) → 𝜅 ) | |
2 | 1 | ex | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜁 ) ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) → ( 𝜆 → 𝜅 ) ) |
3 | 2 | adantl5r | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝜏 ) ∧ 𝜂 ) ∧ 𝜁 ) ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) → ( 𝜆 → 𝜅 ) ) |
4 | 3 | imp | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝜏 ) ∧ 𝜂 ) ∧ 𝜁 ) ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) ∧ 𝜆 ) → 𝜅 ) |