Metamath Proof Explorer
Description: Deduction adding a conjunct to antecedent. (Contributed by Glauco
Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypothesis |
adantlllr.1 |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |
|
Assertion |
adantlllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
adantlllr.1 |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |
2 |
1
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |