Metamath Proof Explorer


Theorem adantlllr

Description: Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis adantlllr.1 ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )
Assertion adantlllr ( ( ( ( ( 𝜑𝜂 ) ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 adantlllr.1 ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )
2 1 adantl3r ( ( ( ( ( 𝜑𝜂 ) ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )