Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994) (Proof shortened by Wolf Lammen, 24-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | adant2.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| Assertion | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝜃 ∧ 𝜓 ) ) → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adant2.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| 2 | simpr | ⊢ ( ( 𝜃 ∧ 𝜓 ) → 𝜓 ) | |
| 3 | 2 1 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝜃 ∧ 𝜓 ) ) → 𝜒 ) |