| Step | Hyp | Ref | Expression | 
						
							| 1 |  | add1cncf.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | add1cncf.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℂ  ↦  ( 𝑥  +  𝐴 ) ) | 
						
							| 3 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 4 |  | cncfmptid | ⊢ ( ( ℂ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( 𝑥  ∈  ℂ  ↦  𝑥 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 5 | 3 3 4 | mp2an | ⊢ ( 𝑥  ∈  ℂ  ↦  𝑥 )  ∈  ( ℂ –cn→ ℂ ) | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  𝑥 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 7 |  | id | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  ∈  ℂ ) | 
						
							| 8 | 3 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ℂ  ⊆  ℂ ) | 
						
							| 9 |  | cncfmptc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ℂ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( 𝑥  ∈  ℂ  ↦  𝐴 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 10 | 7 8 8 9 | syl3anc | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝑥  ∈  ℂ  ↦  𝐴 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 11 | 1 10 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  𝐴 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 12 | 6 11 | addcncf | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( 𝑥  +  𝐴 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 13 | 2 12 | eqeltrid | ⊢ ( 𝜑  →  𝐹  ∈  ( ℂ –cn→ ℂ ) ) |