Step |
Hyp |
Ref |
Expression |
1 |
|
add1cncf.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
add1cncf.f |
⊢ 𝐹 = ( 𝑥 ∈ ℂ ↦ ( 𝑥 + 𝐴 ) ) |
3 |
|
ssid |
⊢ ℂ ⊆ ℂ |
4 |
|
cncfmptid |
⊢ ( ( ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) ) |
5 |
3 3 4
|
mp2an |
⊢ ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) ) |
7 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
8 |
3
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ℂ ⊆ ℂ ) |
9 |
|
cncfmptc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ℂ –cn→ ℂ ) ) |
10 |
7 8 8 9
|
syl3anc |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ℂ –cn→ ℂ ) ) |
11 |
1 10
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ℂ –cn→ ℂ ) ) |
12 |
6 11
|
addcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 + 𝐴 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
13 |
2 12
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |