Metamath Proof Explorer


Theorem add1p1

Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018)

Ref Expression
Assertion add1p1 ( 𝑁 ∈ ℂ → ( ( 𝑁 + 1 ) + 1 ) = ( 𝑁 + 2 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝑁 ∈ ℂ → 𝑁 ∈ ℂ )
2 1cnd ( 𝑁 ∈ ℂ → 1 ∈ ℂ )
3 1 2 2 addassd ( 𝑁 ∈ ℂ → ( ( 𝑁 + 1 ) + 1 ) = ( 𝑁 + ( 1 + 1 ) ) )
4 1p1e2 ( 1 + 1 ) = 2
5 4 a1i ( 𝑁 ∈ ℂ → ( 1 + 1 ) = 2 )
6 5 oveq2d ( 𝑁 ∈ ℂ → ( 𝑁 + ( 1 + 1 ) ) = ( 𝑁 + 2 ) )
7 3 6 eqtrd ( 𝑁 ∈ ℂ → ( ( 𝑁 + 1 ) + 1 ) = ( 𝑁 + 2 ) )