Step |
Hyp |
Ref |
Expression |
1 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 0 ≤ 𝐴 ) |
2 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 𝐵 ∈ ℝ ) |
3 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 𝐴 ∈ ℝ ) |
4 |
|
addge02 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ 𝐵 ≤ ( 𝐴 + 𝐵 ) ) ) |
5 |
2 3 4
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → ( 0 ≤ 𝐴 ↔ 𝐵 ≤ ( 𝐴 + 𝐵 ) ) ) |
6 |
1 5
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 𝐵 ≤ ( 𝐴 + 𝐵 ) ) |
7 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → ( 𝐴 + 𝐵 ) = 0 ) |
8 |
6 7
|
breqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 𝐵 ≤ 0 ) |
9 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 0 ≤ 𝐵 ) |
10 |
|
0red |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 0 ∈ ℝ ) |
11 |
2 10
|
letri3d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → ( 𝐵 = 0 ↔ ( 𝐵 ≤ 0 ∧ 0 ≤ 𝐵 ) ) ) |
12 |
8 9 11
|
mpbir2and |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 𝐵 = 0 ) |
13 |
12
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → ( 𝐴 + 𝐵 ) = ( 𝐴 + 0 ) ) |
14 |
3
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 𝐴 ∈ ℂ ) |
15 |
14
|
addid1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → ( 𝐴 + 0 ) = 𝐴 ) |
16 |
13 7 15
|
3eqtr3rd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 𝐴 = 0 ) |
17 |
16 12
|
jca |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
18 |
17
|
ex |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
19 |
|
oveq12 |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 + 𝐵 ) = ( 0 + 0 ) ) |
20 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
21 |
19 20
|
eqtrdi |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 + 𝐵 ) = 0 ) |
22 |
18 21
|
impbid1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |