Description: Two nonnegative numbers are zero iff their sum is zero. (Contributed by NM, 28-Jul-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lt2.1 | ⊢ 𝐴 ∈ ℝ | |
lt2.2 | ⊢ 𝐵 ∈ ℝ | ||
Assertion | add20i | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt2.1 | ⊢ 𝐴 ∈ ℝ | |
2 | lt2.2 | ⊢ 𝐵 ∈ ℝ | |
3 | add20 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) | |
4 | 3 | an4s | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
5 | 1 2 4 | mpanl12 | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |