| Step | Hyp | Ref | Expression | 
						
							| 1 |  | add2cncf.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | add2cncf.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℂ  ↦  ( 𝐴  +  𝑥 ) ) | 
						
							| 3 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ℂ  ⊆  ℂ ) | 
						
							| 5 |  | cncfmptc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ℂ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( 𝑥  ∈  ℂ  ↦  𝐴 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 6 | 4 4 5 | mpd3an23 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝑥  ∈  ℂ  ↦  𝐴 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  𝐴 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 8 |  | cncfmptid | ⊢ ( ( ℂ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( 𝑥  ∈  ℂ  ↦  𝑥 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 9 | 3 3 8 | mp2an | ⊢ ( 𝑥  ∈  ℂ  ↦  𝑥 )  ∈  ( ℂ –cn→ ℂ ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  𝑥 )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 11 | 7 10 | addcncf | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( 𝐴  +  𝑥 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 12 | 2 11 | eqeltrid | ⊢ ( 𝜑  →  𝐹  ∈  ( ℂ –cn→ ℂ ) ) |