| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addcom |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) ) |
| 2 |
1
|
oveq2d |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐵 + 𝐶 ) ) = ( 𝐴 + ( 𝐶 + 𝐵 ) ) ) |
| 3 |
2
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐵 + 𝐶 ) ) = ( 𝐴 + ( 𝐶 + 𝐵 ) ) ) |
| 4 |
|
addass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) ) |
| 5 |
|
addass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) + 𝐵 ) = ( 𝐴 + ( 𝐶 + 𝐵 ) ) ) |
| 6 |
5
|
3com23 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) + 𝐵 ) = ( 𝐴 + ( 𝐶 + 𝐵 ) ) ) |
| 7 |
3 4 6
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) ) |