Metamath Proof Explorer


Theorem add32i

Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 21-Jan-1997)

Ref Expression
Hypotheses add.1 𝐴 ∈ ℂ
add.2 𝐵 ∈ ℂ
add.3 𝐶 ∈ ℂ
Assertion add32i ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 )

Proof

Step Hyp Ref Expression
1 add.1 𝐴 ∈ ℂ
2 add.2 𝐵 ∈ ℂ
3 add.3 𝐶 ∈ ℂ
4 add32 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) )
5 1 2 3 4 mp3an ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 )