Metamath Proof Explorer
		
		
		
		Description:  Commutative/associative law that swaps the last two terms in a triple
       sum.  (Contributed by NM, 21-Jan-1997)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | add.1 | ⊢ 𝐴  ∈  ℂ | 
					
						|  |  | add.2 | ⊢ 𝐵  ∈  ℂ | 
					
						|  |  | add.3 | ⊢ 𝐶  ∈  ℂ | 
				
					|  | Assertion | add32i | ⊢  ( ( 𝐴  +  𝐵 )  +  𝐶 )  =  ( ( 𝐴  +  𝐶 )  +  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | add.1 | ⊢ 𝐴  ∈  ℂ | 
						
							| 2 |  | add.2 | ⊢ 𝐵  ∈  ℂ | 
						
							| 3 |  | add.3 | ⊢ 𝐶  ∈  ℂ | 
						
							| 4 |  | add32 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 )  +  𝐶 )  =  ( ( 𝐴  +  𝐶 )  +  𝐵 ) ) | 
						
							| 5 | 1 2 3 4 | mp3an | ⊢ ( ( 𝐴  +  𝐵 )  +  𝐶 )  =  ( ( 𝐴  +  𝐶 )  +  𝐵 ) |