Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Addition
add32r
Metamath Proof Explorer
Description: Commutative/associative law that swaps the last two terms in a triple sum,
rearranging the parentheses. (Contributed by Paul Chapman , 18-May-2007)
Ref
Expression
Assertion
add32r
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) )
Proof
Step
Hyp
Ref
Expression
1
addass
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) )
2
add32
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) )
3
1 2
eqtr3d
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) )