Database REAL AND COMPLEX NUMBERS Real and complex numbers - basic operations Addition add32r  
				
		 
		
			
		 
		Description:   Commutative/associative law that swaps the last two terms in a triple sum,
     rearranging the parentheses.  (Contributed by Paul Chapman , 18-May-2007) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					add32r ⊢   ( ( 𝐴   ∈  ℂ  ∧  𝐵   ∈  ℂ  ∧  𝐶   ∈  ℂ )  →  ( 𝐴   +  ( 𝐵   +  𝐶  ) )  =  ( ( 𝐴   +  𝐶  )  +  𝐵  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							addass ⊢  ( ( 𝐴   ∈  ℂ  ∧  𝐵   ∈  ℂ  ∧  𝐶   ∈  ℂ )  →  ( ( 𝐴   +  𝐵  )  +  𝐶  )  =  ( 𝐴   +  ( 𝐵   +  𝐶  ) ) )  
						
							2 
								
							 
							add32 ⊢  ( ( 𝐴   ∈  ℂ  ∧  𝐵   ∈  ℂ  ∧  𝐶   ∈  ℂ )  →  ( ( 𝐴   +  𝐵  )  +  𝐶  )  =  ( ( 𝐴   +  𝐶  )  +  𝐵  ) )  
						
							3 
								1  2 
							 
							eqtr3d ⊢  ( ( 𝐴   ∈  ℂ  ∧  𝐵   ∈  ℂ  ∧  𝐶   ∈  ℂ )  →  ( 𝐴   +  ( 𝐵   +  𝐶  ) )  =  ( ( 𝐴   +  𝐶  )  +  𝐵  ) )