| Step | Hyp | Ref | Expression | 
						
							| 1 |  | add12 | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ )  →  ( 𝐵  +  ( 𝐶  +  𝐷 ) )  =  ( 𝐶  +  ( 𝐵  +  𝐷 ) ) ) | 
						
							| 2 | 1 | 3expb | ⊢ ( ( 𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( 𝐵  +  ( 𝐶  +  𝐷 ) )  =  ( 𝐶  +  ( 𝐵  +  𝐷 ) ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( ( 𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( 𝐴  +  ( 𝐵  +  ( 𝐶  +  𝐷 ) ) )  =  ( 𝐴  +  ( 𝐶  +  ( 𝐵  +  𝐷 ) ) ) ) | 
						
							| 4 | 3 | adantll | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( 𝐴  +  ( 𝐵  +  ( 𝐶  +  𝐷 ) ) )  =  ( 𝐴  +  ( 𝐶  +  ( 𝐵  +  𝐷 ) ) ) ) | 
						
							| 5 |  | addcl | ⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ )  →  ( 𝐶  +  𝐷 )  ∈  ℂ ) | 
						
							| 6 |  | addass | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  +  𝐷 )  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 )  +  ( 𝐶  +  𝐷 ) )  =  ( 𝐴  +  ( 𝐵  +  ( 𝐶  +  𝐷 ) ) ) ) | 
						
							| 7 | 6 | 3expa | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  +  𝐷 )  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 )  +  ( 𝐶  +  𝐷 ) )  =  ( 𝐴  +  ( 𝐵  +  ( 𝐶  +  𝐷 ) ) ) ) | 
						
							| 8 | 5 7 | sylan2 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( 𝐴  +  𝐵 )  +  ( 𝐶  +  𝐷 ) )  =  ( 𝐴  +  ( 𝐵  +  ( 𝐶  +  𝐷 ) ) ) ) | 
						
							| 9 |  | addcl | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐷  ∈  ℂ )  →  ( 𝐵  +  𝐷 )  ∈  ℂ ) | 
						
							| 10 |  | addass | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ  ∧  ( 𝐵  +  𝐷 )  ∈  ℂ )  →  ( ( 𝐴  +  𝐶 )  +  ( 𝐵  +  𝐷 ) )  =  ( 𝐴  +  ( 𝐶  +  ( 𝐵  +  𝐷 ) ) ) ) | 
						
							| 11 | 10 | 3expa | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  ( 𝐵  +  𝐷 )  ∈  ℂ )  →  ( ( 𝐴  +  𝐶 )  +  ( 𝐵  +  𝐷 ) )  =  ( 𝐴  +  ( 𝐶  +  ( 𝐵  +  𝐷 ) ) ) ) | 
						
							| 12 | 9 11 | sylan2 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( 𝐴  +  𝐶 )  +  ( 𝐵  +  𝐷 ) )  =  ( 𝐴  +  ( 𝐶  +  ( 𝐵  +  𝐷 ) ) ) ) | 
						
							| 13 | 12 | an4s | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( 𝐴  +  𝐶 )  +  ( 𝐵  +  𝐷 ) )  =  ( 𝐴  +  ( 𝐶  +  ( 𝐵  +  𝐷 ) ) ) ) | 
						
							| 14 | 4 8 13 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( 𝐴  +  𝐵 )  +  ( 𝐶  +  𝐷 ) )  =  ( ( 𝐴  +  𝐶 )  +  ( 𝐵  +  𝐷 ) ) ) |