Step |
Hyp |
Ref |
Expression |
1 |
|
add12 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐵 + ( 𝐶 + 𝐷 ) ) = ( 𝐶 + ( 𝐵 + 𝐷 ) ) ) |
2 |
1
|
3expb |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐵 + ( 𝐶 + 𝐷 ) ) = ( 𝐶 + ( 𝐵 + 𝐷 ) ) ) |
3 |
2
|
oveq2d |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) = ( 𝐴 + ( 𝐶 + ( 𝐵 + 𝐷 ) ) ) ) |
4 |
3
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) = ( 𝐴 + ( 𝐶 + ( 𝐵 + 𝐷 ) ) ) ) |
5 |
|
addcl |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 + 𝐷 ) ∈ ℂ ) |
6 |
|
addass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 + 𝐷 ) ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) ) |
7 |
6
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 + 𝐷 ) ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) ) |
8 |
5 7
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) ) |
9 |
|
addcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐵 + 𝐷 ) ∈ ℂ ) |
10 |
|
addass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( 𝐵 + 𝐷 ) ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐷 ) ) = ( 𝐴 + ( 𝐶 + ( 𝐵 + 𝐷 ) ) ) ) |
11 |
10
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐵 + 𝐷 ) ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐷 ) ) = ( 𝐴 + ( 𝐶 + ( 𝐵 + 𝐷 ) ) ) ) |
12 |
9 11
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐷 ) ) = ( 𝐴 + ( 𝐶 + ( 𝐵 + 𝐷 ) ) ) ) |
13 |
12
|
an4s |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐷 ) ) = ( 𝐴 + ( 𝐶 + ( 𝐵 + 𝐷 ) ) ) ) |
14 |
4 8 13
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐷 ) ) ) |