Metamath Proof Explorer


Theorem addassd

Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addcld.1 ( 𝜑𝐴 ∈ ℂ )
addcld.2 ( 𝜑𝐵 ∈ ℂ )
addassd.3 ( 𝜑𝐶 ∈ ℂ )
Assertion addassd ( 𝜑 → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 addcld.1 ( 𝜑𝐴 ∈ ℂ )
2 addcld.2 ( 𝜑𝐵 ∈ ℂ )
3 addassd.3 ( 𝜑𝐶 ∈ ℂ )
4 addass ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) )