Metamath Proof Explorer


Theorem addassi

Description: Associative law for addition. (Contributed by NM, 23-Nov-1994)

Ref Expression
Hypotheses axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
axi.3 𝐶 ∈ ℂ
Assertion addassi ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) )

Proof

Step Hyp Ref Expression
1 axi.1 𝐴 ∈ ℂ
2 axi.2 𝐵 ∈ ℂ
3 axi.3 𝐶 ∈ ℂ
4 addass ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) )
5 1 2 3 4 mp3an ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) )