Metamath Proof Explorer
Description: Associative law for addition. (Contributed by NM, 23-Nov-1994)
|
|
Ref |
Expression |
|
Hypotheses |
axi.1 |
⊢ 𝐴 ∈ ℂ |
|
|
axi.2 |
⊢ 𝐵 ∈ ℂ |
|
|
axi.3 |
⊢ 𝐶 ∈ ℂ |
|
Assertion |
addassi |
⊢ ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
axi.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
axi.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
axi.3 |
⊢ 𝐶 ∈ ℂ |
4 |
|
addass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) ) |
5 |
1 2 3 4
|
mp3an |
⊢ ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) |